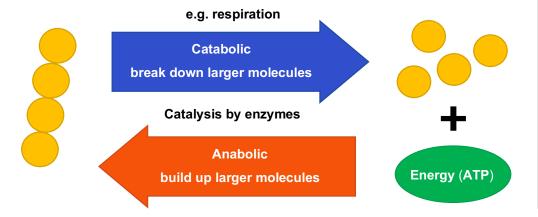
CONTENTS


1	Characteristics and classification of living organisms	12	Respiration
2	Organisation of the organism	13	Excretion in humans
3	Movement in and out of cells	14	Coordination and response
4	Biological molecules	15	Drugs
5	Enzymes	16	Reproduction
6	Plant nutrition	17	Inheritance
7	Human nutrition	18	Variation and selection
8	Transport in plants	19	Organisms and their environment
9	Transport in animals	20	Human influences on ecosystems
10	Diseases and immunity	21	Biotechnology and genetic modification
11	Gas exchange in humans	•	Review for paper 6

1 CHARACTERISTICS AND CLASSIFICATION OF LIVING ORGANISMS

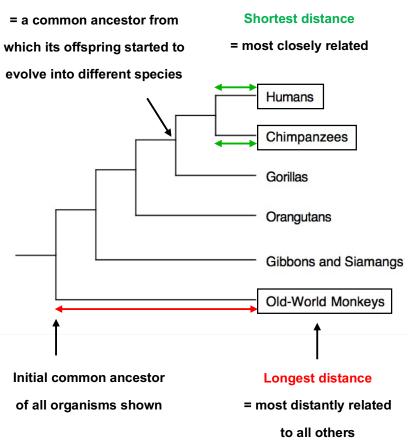

CHARACTERISTICS OF LIFE (MRS. GREN)

Characteristic	Description	
Movement	Action by an organism or part of an organism causing a change of position or place	
Respiration	Chemical reactions in cells that break down nutrient molecules and release energy for metabolism	
Sensitivity	Ability to detect and response to changes in the internal or external environment	
Growth	A permanent increase in size or dry mass	
Reproduction	Processes that make more of the same kind of organism	
Excretion	Removal from an organism of: waste products of metabolism substances in excess of requirements	
Nutrition	Taking in of materials for energy, growth and development	

 Metabolism is a general term for all chemical reactions taking place in cells, in which respiration is included. There are two types of metabolic reactions:

CLASSIFYING ORGANISMS

Red fox (Vulpes vulpes)


The **binomial name** of each organism is an **internationally agreed system** in which the **scientific name** of an organism is made up of two parts showing the **Genus** and **species**.

A species is a group of organisms that can reproduce to produce fertile offspring.

- Organisms can be classified into groups by their **shared features**.
- Classification can be done based on DNA base sequences.
- DNA base sequences are more similar among organisms which share a more recent ancestor (are more closely related).

CLADOGRAMS

Branch point

Species that are more closely related in evolution will:

- Share a shorter distance from a branching point
- (So) share a more recent common ancestor
- (So) have **split** from each other more **recently**
- (So) have had **less time** for **mutations** to occur and accumulate
- (So) have more similar DNA base sequences in specific genes.

THE FIVE KINGDOMS

	Animal	Plant	Fungi	Prokaryote	Protoctist
Nucleus	✓	✓	✓	×	✓
0.11	×	✓	✓	✓	Some
Cell wall		Cellulose	Each have a different composition		
Unicellular or multicellular	M	М	M – most U – some	U	M – some U – most
Chlorophyll	×	Green plants	×	×	Some

THE VERTEBRATES

Vertebrate group	Distinctive features	Breathing
MAMMALS Warm-blooded	 Hair or fur Produce milk from mammary glands Placenta Diaphragm 	Use lungs
BIRDS Warm-blooded	FeathersBeaksWings (most can fly)Lay hard-shelled eggs	Use lungs
REPTILES	 Dry, scaly skin Lay eggs with leathery shells	Use lungs
FISH	Wet scalesFins for movingExternal fertilisation	Use gills
AMPHIBIANS	 Smooth, wet, permeable skin Young live in water, adults live on land 	Young – gills Adult – lungs

THE ARTHROPODS

Common features

Exoskeleton

Jointed legs

Segmented body

Insects

3 body parts
3 pairs of legs
Many have 4 wings
Compound eyes

2 antennae

Arachnids

2 body parts
4 pairs of legs
No wings
Simple eyes
No antennae

Crustaceans

Chalky exoskeleton

10 - 14 legs

No wings

Simple eyes

4 antennae

Myriapods

Elongated bodies

Many body parts

Many pairs of legs

Centipedes – 2 legs per segment

Millipedes – 4 legs per segment

Flowering plants

Monocotyledons

One cotyledon in seeds
Flower parts in multiples of 3
Leaves are strap-shaped
Leaves have parallel veins
Branched (fibrous) roots

Dicotyledons

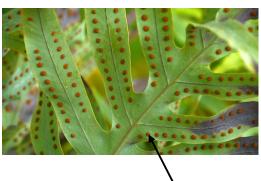
Two cotyledons in seeds

Flower parts in multiples of 4 or 5

Leaves are broad and wide

Leaves have branched veins

Tap roots


Ferns = non-flowering plants

Do not produce flowers

Leaves are called fronds

Reproduce using spores

Spores on underside of leaves

2 ORGANISATION OF THE ORGANISM

Rough endoplasmic reticulum

- Attached with ribosomes
- Produces proteins to be taken outside of the cell

Nucleolus

Site of ribosome production

Nucleus

- Contains **DNA** (chromosomes)
- Controls the cell's activities

Golgi apparatus

Processes proteins made in the rough ER, and releases them in vesicles for export

ANIMAL CELL

Free ribosome

Produces **proteins** to be **used inside** of the cell

Cytoplasm

Site of chemical reactions

Mitochondrion

Site of aerobic respiration

Smooth endoplasmic reticulum

- No ribosomes attached
- Synthesises lipids

Cell membrane

Controls **movement** of substances in and out of the cell

Vesicle

Sac that contains materials to be exported out of the cell

Vesicle fusing with cell membrane

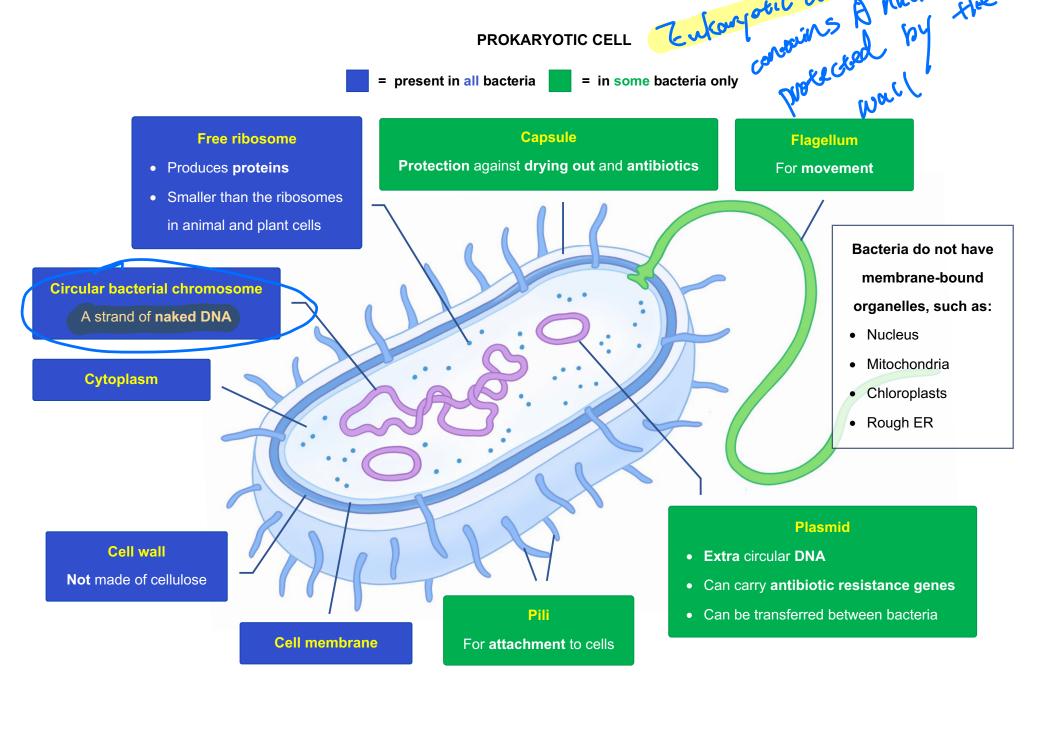
PLANT CELL

THREE ADDITIONAL STRUCTURES

Cell wall

- Provides strength, support, shape and protection
- Made of cellulose

Chloroplast


- Contains the green pigment chlorophyll
- Absorbs light for photosynthesis
- Only present in plant cells exposed to light

Large vacuole

- Large sac that contains dissolved sugars and salts
- Maintains turgor pressure against the cell wall

Cell membrane

is cell adens are

Cells with high rates of metabolism,

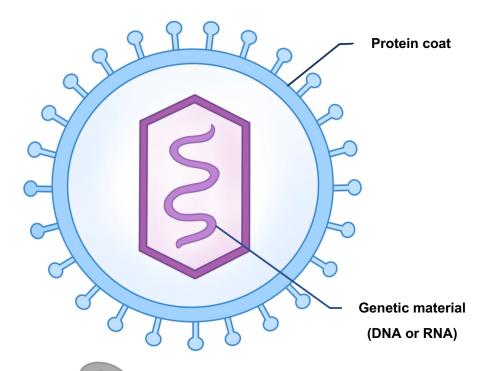
such as muscle cells and pancreas cells have:

- Large amounts of rough endoplasmic reticulum to produce and secrete proteins such as enzymes or hormones
- Large numbers of mitochondria for respiration to release sufficient energy

Calculating magnification

Magnification =

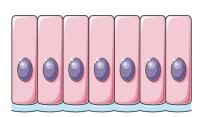
mage size

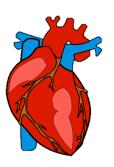

Actual size

 $1 \text{ mm} = 1000 \mu \text{m}$

KEEP UNITS THE SAME! ⁽³⁾

VIRUSES






- Viruses are generally considered as non-living.
- Viruses are not made of cells, so do not have nuclei or cell organelles.
- They do not grow, and cannot metabolise or reproduce independent of a host cell.

LEVELS OF ORGANISATION

Cell

Organ

Organ system

The basic structural and functional unit of life.

New cells are produced by

division of existing cells.

A group of cells
with similar structures,
working together to perform
a shared function

Tissue

A group of tissues
working together to perform
specific functions

A group of organs
with related functions,
working together to perform
body functions

Ciliated cells

Root hair cells

Palisade mesophyll cells

Nerve cells

Red blood cells

Sperm cells

Egg cells

Muscle

Connective

Epithelial

Xylem

Phloem

Root

Stem

Leaf

Brain

Stomach

Liver

Skin

Reproductive

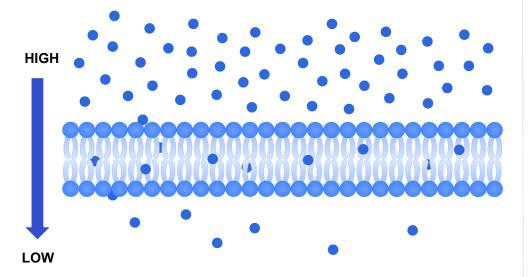
Respiratory

Circulatory

Digestive

Excretory

Skeletal


Nervous

Hormonal

3 MOVEMENT IN AND OUT OF CELLS

DIFFUSION

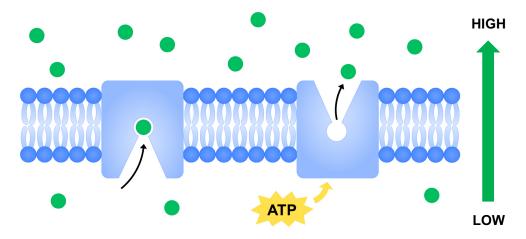
The net movement of particles from a higher to lower concentration, down a concentration gradient, due to their random movement

The energy for diffusion comes from the kinetic energy of the random movement of molecules and ions.

It does not come from respiration.

INCREASE

Temperature
Surface area
Concentration gradient


Faster diffusion

DECREASE

Distance

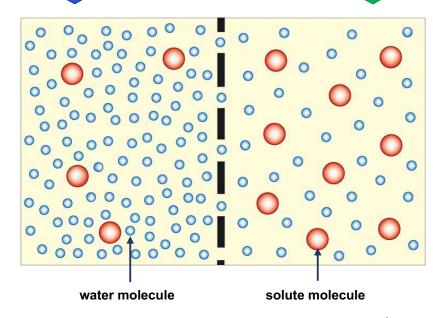
ACTIVE TRANSPORT

The net movement of particles from a lower to higher concentration, against a concentration gradient, using energy from respiration

Molecule **enters** pump protein and **binds** to a **specific site**

Pump protein uses energy from
respiration to change shape and move
the molecule(s) across the cell membrane

Since active transport is dependent on the energy released by respiration, its rate will be affected by the factors that affect the rate of respiration, such as temperature, pH and O₂ concentration.


OSMOSIS

Dilute solution

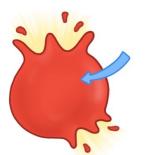
Higher water potential

Concentrated solution

Lower water potential

Net movement of water molecules

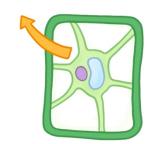
• Water's solvent property allows osmosis to occur in living organisms.


The net movement of water molecules

from a higher water potential to a lower water potential

through a partially permeable membrane

DILUTE SOLUTION


*

CONCENTRATED SOLUTION

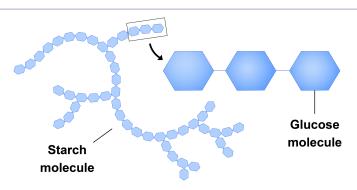
Plant cell

Animal cell

Higher water potential	Outside cell	Inside cell
Water moves by osmosis from	Higher → lower water potential	
Direction	Into the cell	Out of the cell
Pressure in cell	Increases	Decreases
Volume of cell	Increases	Decreases
Cytoplasm (plant)	Pushes against cell wall	Detaches from cell wall
Turgor pressure	Increases	Decreases
Cell becomes	Animal = lysed Plant = turgid	Animal = crenated Plant = flaccid then plasmolysed

SUMMARY

	Diffusion	Osmosis	Active transport
Direction of net movement	Down a concentration gradient	Down a concentration gradient	Against a concentration gradient
Uses energy	No	No	Yes
Must have a partially permeable membrane	No	Yes	Yes
Examples	 Movement of carbon dioxide, oxygen and water vapour in and out of plant cells Gas exchange through tissue fluid and alveoli in humans 	 Plant cells are supported due to osmosis (provides stiffness) Movement of water from the soil into xylem of plants 	 lon uptake by root hair cells Glucose uptake by epithelial cells of the small intestine and kidney tubules


4 BIOLOGICAL MOLECULES

CARBOHYDRATES

Only contain: C, H, O

LIPIDS

Always contain: C, H, O

- Large carbohydrate molecules (polysaccharides) are made up of many simple sugar units (monosaccharides) linked together.
- Starch, glycogen and cellulose are all insoluble polysaccharides built up from many glucose molecules.

Glycerol $\begin{bmatrix} H & O & \\ H - C & O & \\ & & \\ H - C & O & \\ & & \\ H - C & O & \\ & & \\ & & \\ \end{bmatrix}$ Fatty acids

- Lipids are molecules that are insoluble in water but soluble in non-polar solvents. Fats are one group of lipids.
- Fat molecules (called triglycerides) are made up of 3 fatty acid molecules
 bonded to one glycerol molecule.
 - Oils are fats that are in liquid state at room temperature.

FOUR MAJOR

GROUPS

NUCLEIC ACIDS

Only contain: C, H, O, N, P

PROTEINS

Always contain: C, H, O, N

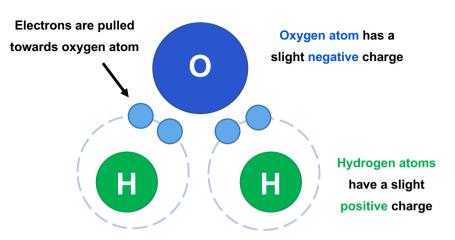
Amino acid

Protein

Chain folds

- Proteins are large molecules built up from simple units called amino acids.
- 20 types of amino acids are used by living things to synthesise proteins.
- The shape of a protein molecule is determined by its amino acid sequence.

- DNA and RNA are two types of nucleic acids found in cells.
- They are long molecules (much longer than proteins) made up of chains of units called nucleotides (see unit 17).


Large molecule	Smaller molecules it is made from	Role	
Starch		Storage carbohydrate in plant cells	
Glycogen	Glucose	Storage carbohydrate in animal cells	
Cellulose		Strengthens plant cell walls	
Protein	Amino acids	Cell growth and repair	
Fats & oils	Glycerol & fatty acids	Energy store, insulation and protection	

FOOD TESTS

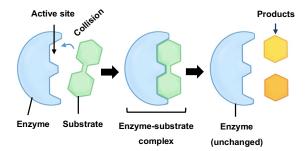
Test	Method	Colour change if present	
Starch Add iodine solution		Brown → blue-black	
Reducing sugar (glucose)	Heat with Benedict's solution	*Blue → red	
Protein	Add Biuret solution	Blue → purple	
Fat (lipid)	Add ethanol Shake well Add equal volume of water	White emulsion	
Vitamin C	Add DCPIP	Blue → colourless	

^{*}Benedict's solution changes colour from $blue \to green \to orange \to red$ depending on the **concentration** of **reducing sugar** present.

WATER AS A SOLVENT

Water is a polar molecule with a positive region (H atoms) and negative region (O atom).

This makes water a good solvent as polar water molecules can attract and dissolve other polar molecules.


- Water is used as a solvent in transport (e.g. in xylem, phloem and blood plasma), digestion and excretion.
- Nonpolar substances such as lipids are insoluble in water, so although
 water is sometimes called the "universal solvent" it cannot really dissolve
 anything it meets.

5 ENZYMES

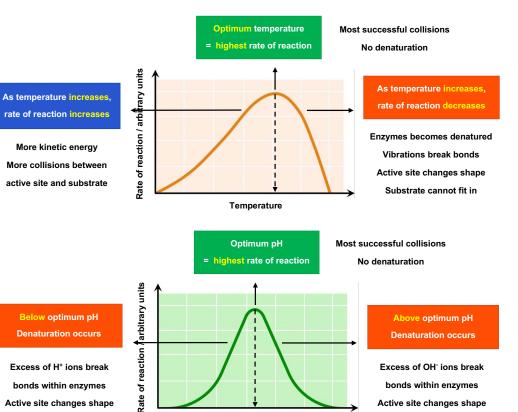
Catalyst = a substance that increases the rate of a chemical reaction and is not changed by the reaction

Enzymes are proteins that are involved in all metabolic reactions, where they function as biological catalysts

THE 'LOCK AND KEY' MODEL

- The active site of an enzyme has a complementary shape to a specific substrate, allowing them to fit together
- The substrate binds to the active site, forming an enzymesubstrate complex
- Bonds are weakened in the substrate
- . Activation energy for the reaction is lowered
- · Products are released and the enzyme is unchanged

EFFECT OF TEMPERATURE AND PH ON ENZYME ACTIVITY


pН

More kinetic energy

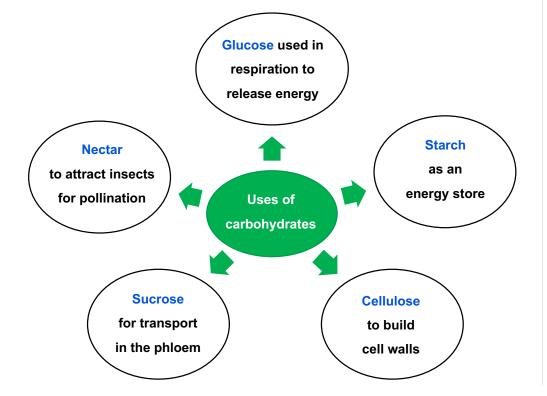
Below optimum pH

Denaturation occurs

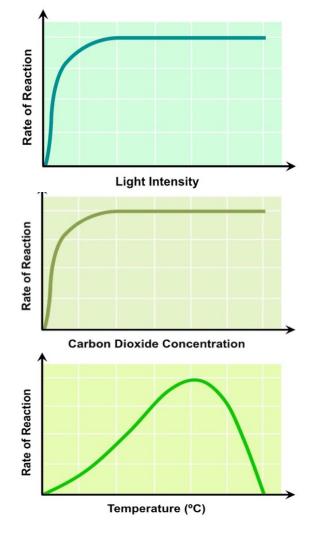
Active site changes shape

Active site changes shape

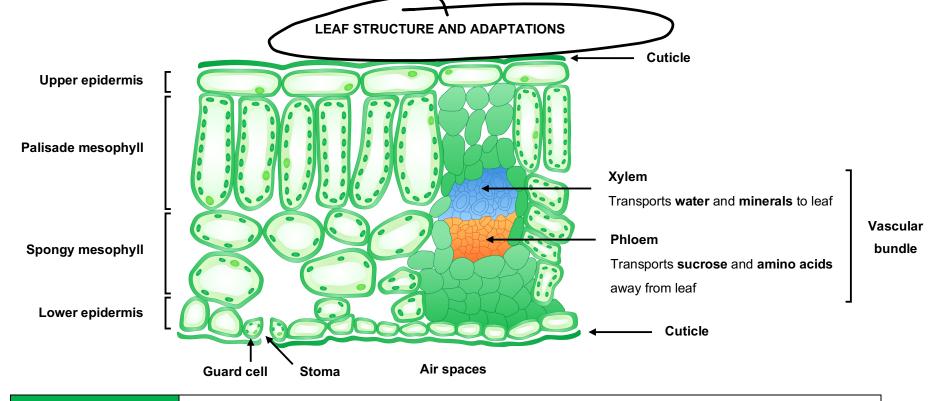
DENATURATION


Active site is no longer a complementary shape to substrate Substrate cannot fit in

PHOTOSYNTHESIS

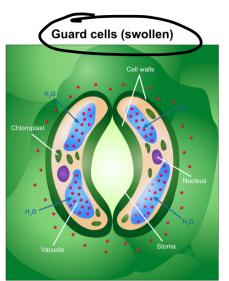

The process by which plants synthesise carbohydrates from raw materials using energy from light

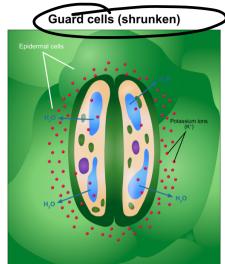
- Chlorophyll is a green pigment that is found in chloroplasts.
- They transfer the energy from light into energy in chemicals (ATP molecules).
 This chemical energy is then used to synthesise carbohydrates.



LIMITING FACTORS OF PHOTOSYNTHESIS

- Light intensity, carbon dioxide concentration and temperature are factors that affect the rate of photosynthesis.
- The limiting factor is the one that is in shortest supply (farthest from its optimum) at a particular time, causing the rate to be limited.


^{*} Photosynthesis is controlled by enzymes!



	Most leaves have a large surface area and are thin (small volume), maximising surface area to volume ratio
Leaf shape	(So) more light energy can be absorbed as a greater area is exposed
	(And) reduced distance for sunlight and CO₂ to reach chloroplasts
Waxy cuticle	Waterproof – prevents water loss due to evaporation
Upper epidermis	Cells are thin and transparent with no chloroplasts
Opper epideriiis	Allows light to pass through and reach the chloroplasts in mesophyll cells
Palisade mesophyll • Cells contain many chloroplasts and are tightly packed near the surface – maximises light absorpt	
Spangy masanhyll	Cells are loosely packed with intercellular air spaces
Spongy mesophyll	Allows faster diffusion of gases throughout the whole leaf
Stomata	Holes that let gases in and out of the leaf – CO ₂ and O ₂ in photosynthesis, water vapour in transpiration
Guard cells • Work in pairs to control the opening and closing of stomata in the lower epidermis	

HOW GUARD CELLS WORK

- Light triggers guard cells to take in ions by active transport
- (So) water potential inside guard cells is lowered
- (So) water enters by osmosis
- (So) guard cells become turgid and expand, opening the stoma

- lons are released from guard cells
- (So) water potential inside guard

 cells is raised
- (So) water leaves by osmosis
- (So) guard cells become flaccid and shrink, closing the stoma

STOMA OPENING

STOMA CLOSING

HOW A LEAF IS INVOLVED IN PHOTOSYNTHESIS

- 1. CO2 diffuses down a concentration gradient through stomata into a leaf.
- 2. CO₂ diffuses throughout the leaf in the intercellular air spaces.
- 3. CO_2 dissolves in a film of water that surrounds the mesophyll cells.
- 4. CO₂ diffuses in solution into the mesophyll cells and passes to chloroplasts where photosynthesis occurs.
- 5. Sugars made by photosynthesis are carried away from the leaf by the phloem.
- 6. O2 diffuses down a concentration gradient from the mesophyll cells into the air spaces, out through stomata into the atmosphere.

7 HUMAN NUTRITION

BALANCED DIET

Provides all nutrients, in their correct amounts, to maintain health and the body's energy requirements

Nutrient	Role	Main sources
Carbohydrate	Provides energy	Pasta, rice, breadPotatoes
Fat	Energy source and storage Insulation and protection	Butter & margarineCooking oils
Protein	Cell growth and repair	MeatDairy products
Vitamin C	Healthy gums – prevents scurvy Healthy bones and teeth Skin repair and wound healing	OrangesLemonsLimesBroccoli & spinach
Vitamin D	Helps body to absorb calcium for strong bones and teeth	Oily fishMilk and cereals
Iron	Producing red blood cells (component of haemoglobin)	Red meatEggsGreen vegetables
Calcium	For bones and teeth , muscle action and blood clotting	• Flour • Milk
Fibre	Pushing food through the gut Prevents constipation	CerealsNutsBrown riceFruits & vegetables
Water	Chemical reactions occur within it	

NUTRIENT DEFICIENCIES

Vitamin C deficiency

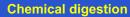
SCURVY (bleeding gums)

Vitamin D deficiency

RICKETS (soft and bent bones)

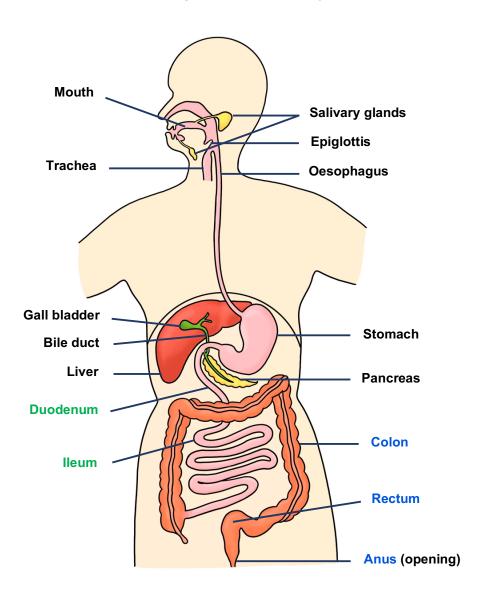
PHYSICAL VS CHEMICAL DIGESTION

Physical digestion


Breakdown of food into smaller pieces without chemical change to the food molecules

Can be absorbed
through intestinal walls,
enter the bloodstream
and carried to cells
for assimilation

Increased surface area for action of digestive enzymes



Breakdown of large, insoluble molecules into small, soluble molecules

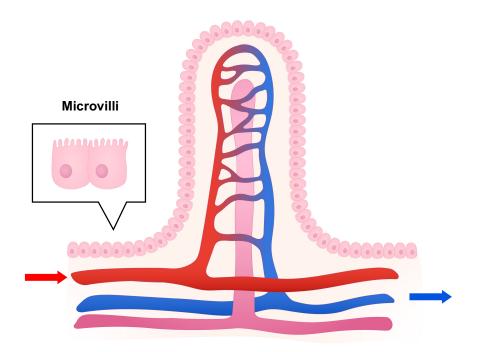
	PHYSICAL	CHEMICAL
Involves enzymes	×	✓
Breaks down molecules	×	✓
Chemically changes food molecules	X	✓
Produces soluble molecules	X	✓

THE HUMAN ALIMENTARY CANAL

- The small intestine is made up of the duodenum and ileum
- The large intestine is made up of the colon, rectum and anus

FUNCTIONS OF DIFFERENT ORGANS

ORGAN	FUNCTION(S)	
Mouth	 Ingestion: taking of substances into the body Physical: chewing by teeth Chemical: action of amylase 	
Oesophagus	 Lined with mucus to help swallowing Muscle contractions push food toward the stomach 	
Stomach	 Physical: food is churned by muscle contractions Chemical: action of pepsin 	
Liver	Produces bile	
Gall bladder	Stores bile	
Produces all types of digestive enzyme: carbohydrase, protease and lipase		
Small intestine	 Absorption of digested food: movement of nutrient molecules through the intestinal wall into the blood Absorption of most water Chemical: action of maltase, trypsin and lipase 	
Large intestine	 Colon: absorption of salts and less water Rectum: storage of faeces Anus: egestion: removal of undigested food from the body as faeces 	


- Most water is absorbed by the small intestine, but some is also absorbed by the colon.
- Assimilation is the uptake and use of nutrients by body cells.

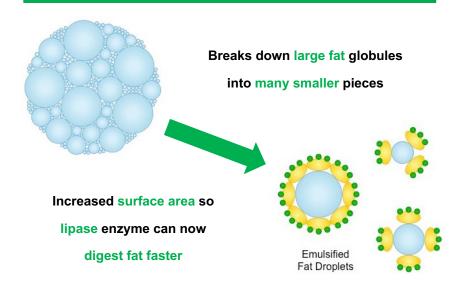
DIGESTIVE ENZYMES

Enzyme	Site of production	Site of action	Substrate	Product(s)
AMYLASE	Salivary glands Pancreas	Mouth Small intestine	Starch	Maltose
MALTASE	Small intestinal wall Pancreas	On the membranes of the epithelial cells lining the small intestine	Maltose	Glucose
PEPSIN	Stomach	Stomach Acidic optimum pH	Proteins	Peptides
TRYPSIN	Pancreas	Small intestine Alkaline optimum pH	Peptides	Amino acids
LIPASE	Pancreas	Small intestine	Fats	Glycerol Fatty acids

• Amylase and maltase are carbohydrase enzymes; pepsin and trypsin are protease enzymes.

STRUCTURE OF A VILLUS

Structure	Adaptation to function
Many microvilli on epithelium	Large surface area for faster diffusion
Close to blood capillaries	Short diffusion distance = faster diffusion of soluble food
Thin wall (single cell layer)	molecules into the blood
Many mitochondria	More respiration to release more energy for active transport
Lacteal (lymph vessel)	Carries fatty acids and glycerol to the heart so that fat does not enter the blood too quickly
Venule	Carries absorbed nutrients to the liver


ROLE OF STOMACH ACID

Stomach acid (HCI) has a low pH which:

- Kills bacteria in ingested food
- Provides an acidic pH for optimum enzyme activity

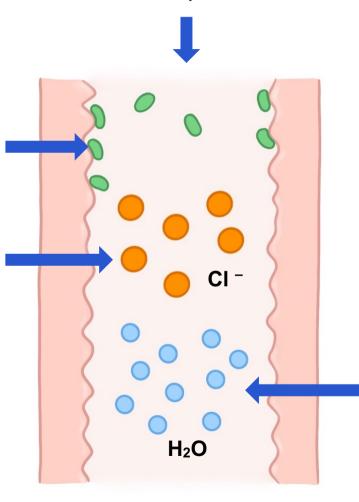
ROLE OF BILE

Function 1 – Emulsification

Function 2 – Neutralisation

- Bile neutralises stomach acid in food entering the small intestine.
- This provides an alkaline optimum pH for enzymes that work in the small intestine (e.g. amylase, maltase, trypsin and lipase)

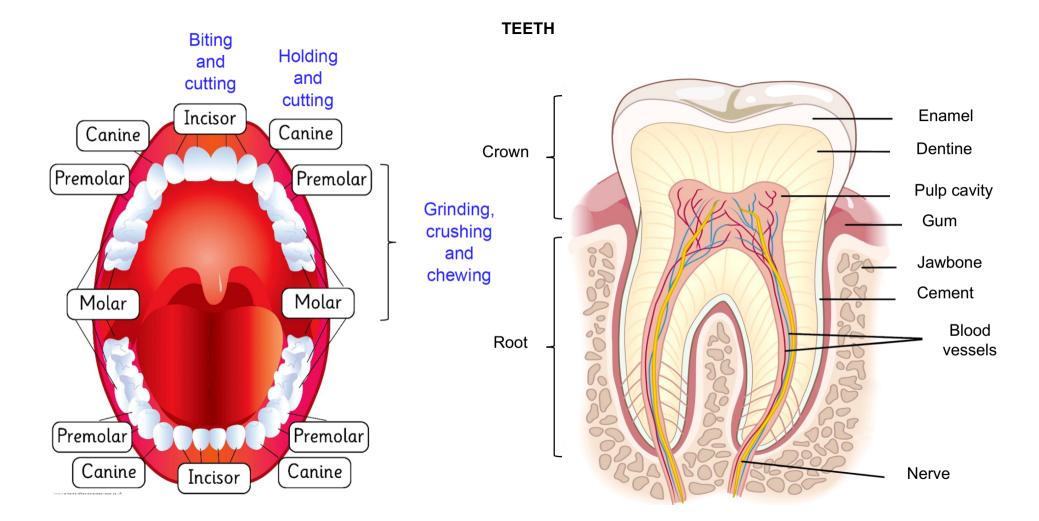
HOW CHOLERA IS CAUSED


Cholera is a disease caused by a bacterium which is transmitted in contaminated water.

Cholera bacterium produces a toxin

1. Toxin attaches to wall of the small intestine

This causes surrounding cells
and capillaries to secrete


Cl⁻ ions into the
small intestine lumen

2. Water potential in the small intestine lumen decreases

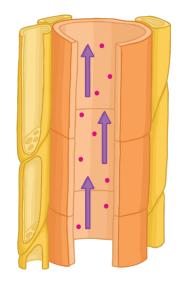
3. (So) water enters the small intestine lumen by osmosis

4. (So) more water enters the faeces and leaves the anus, causing diarrhoea

8 TRANSPORT IN PLANTS

TRANSPORT TISSUES IN PLANTS

	Xylem	Phloem
What is transported	Water Mineral ions	Sugar as sucrose Amino acids
Direction of transport	Unidirectional (up only)	Bidirectional (up and down)
Made of cells that are:	Dead (hollow)	Living (release energy)

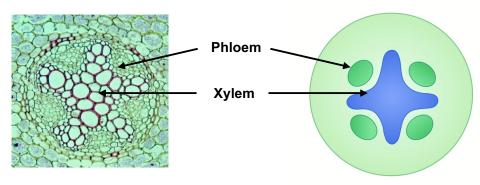

ADAPTATIONS OF XYLEM

No cell contents

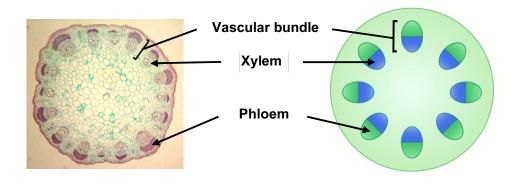
No end walls

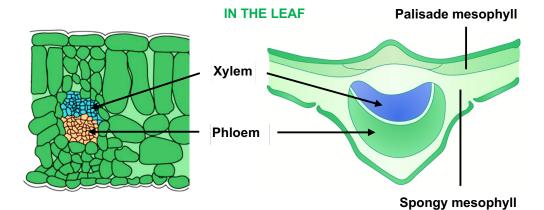
between vessels

Forms a long
continuous tube
which gives little
resistance to water

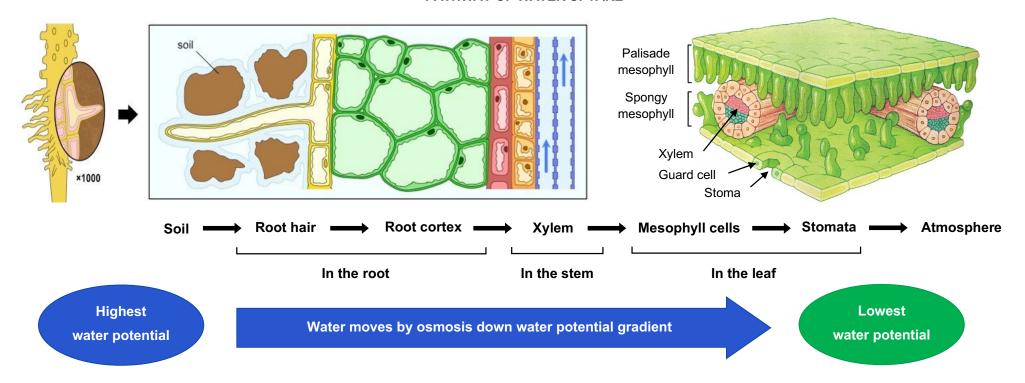

Walls thickened
with lignin
Waterproofs
xylem, withstands
water pressure
and provides
structural support

Pores in cell walls


Allow water to move between vessels and into adjacent leaf cells


POSITIONS OF THE VASCULAR BUNDLE

IN THE ROOT



IN THE STEM

PATHWAY OF WATER UPTAKE

HOW ROOT HAIR CELLS ABSORB WATER

- Mineral ions enter root hair cells by active transport:
 Carrier proteins use energy from respiration to move the ions across the cell membrane, against a concentration gradient.
- This lowers the water potential inside the cells, so that the soil now has a higher water potential.
- Water enters root hair cells by osmosis down the water
 potential gradient (across partially permeable membranes).

HOW ROOT HAIR CELLS ARE ADAPTED TO ABSORB WATER QUICKLY

Contain many mitochondria for respiration to release energy for active transport

TRANSPIRATION

DEFINITION

- Transpiration is the loss of water vapour from plant leaves.
- Water evaporates from the surfaces of mesophyll cells into the air spaces,
- and then diffuses out through the stomata as water vapour.
- Plants transport water from the roots to the leaves in xylem vessels to replace losses from transpiration.

HOW WATER IS SUPPLIED BY XYLEM FOR TRANSPIRATION

Light causes stomata to open (to allow photosynthesis)

Evaporation of water from mesophyll cells and diffusion of water vapour through stomata

Reduction of water potential at top of the plant (so) water enters xylem by osmosis

Water molecules 'stick' together due to cohesion

Water is drawn up by the transpiration pull in a continuous column

FACTORS THAT AFFECT TRANSPIRATION RATE

LIGHT INTENSITY

- Bright light causes stomata to open
 (so CO₂ can diffuse in for photosynthesis)
- = faster transpiration

TEMPERATURE

- Water molecules have more kinetic energy:
- More evaporation
- Faster diffusion of water vapour
- = faster transpiration

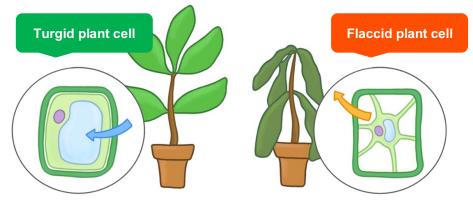
WIND SPEED

- Wind blows water molecules away from leaf surfaces
- (So) **higher** water potential gradient between inside and outside of leaf
- (So) **faster diffusion** of water vapour
- = faster transpiration

HUMIDITY

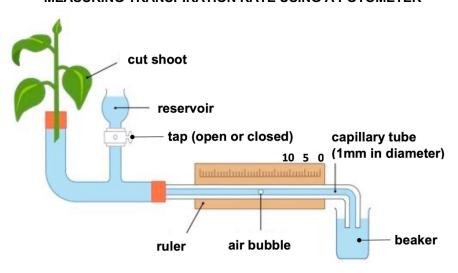
- Higher concentration of water vapour in the air = smaller water potential gradient
- (So) **slower diffusion** of water vapour
- = faster transpiration

WILTING


 When water in plant cells is not being replaced as quickly as it is being lost, a plant wilts due to the lack of water needed for structural support.

Conditions that can cause wilting

- Lack of water
- High temperature
- Low humidity


An advantage to plants

Wilting allows plant leaves to expose less surface area to the sun, which reduces further water loss so that water can be conserved for other processes in the plant.

	Turgid plant	Wilting plant
Higher water potential	Outside cells	Inside cells
Water moves	Down water potential gradient by osmosis	
Direction	Enters cells	Leaves cells
Pressure of water against cell wall	Increases	Decreases
Cells become	Turgid	Flaccid
Plant stem and leaves	Gain stiffness	Lose stiffness

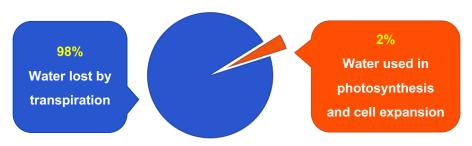
MEASURING TRANSPIRATION RATE USING A POTOMETER

Preventing air bubbles from forming in the tube

- **Cut** the shoot **underwater** at an **angle** (prevents air entering xylem)
- Seal all joints with Vaseline

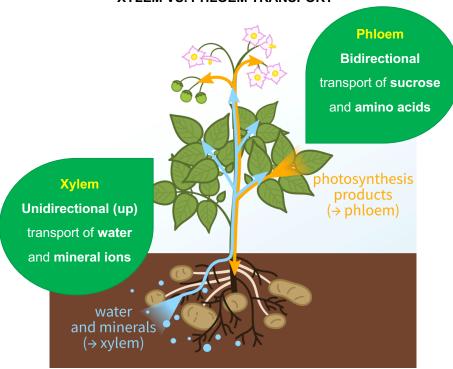
How it is used

- The air bubble is placed at zero (0)
- As the plant transpires it will take up water, causing the air bubble to move left towards the plant
- Measure the distance moved by the air bubble in a fixed time period
- Open the tap to move the air bubble back to zero for repeats


2 ways of calculating transpiration rate

1. Distance moved by air bubble / unit time

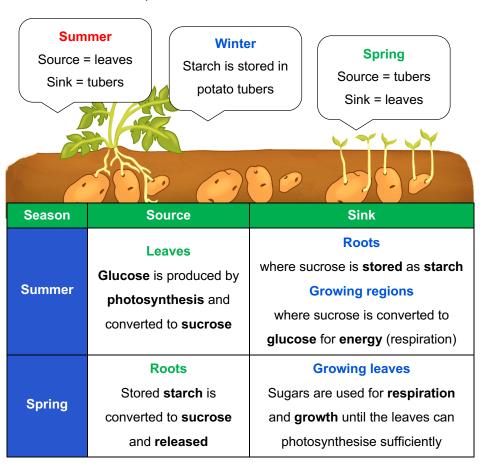
Volume of water uptake (area = πr^2 where r = radius) :


2. Distance moved by air bubble \times area of capillary tube / unit time

TOTAL WATER UPTAKE BY A PLANT

- A potometer directly measures the rate of water uptake, which mostly depends on the rate of transpiration (indirectly measured).
- However, they cannot be exactly the same as a small amount of water is also used in photosynthesis and to make cells turgid for support.

XYLEM VS. PHLOEM TRANSPORT

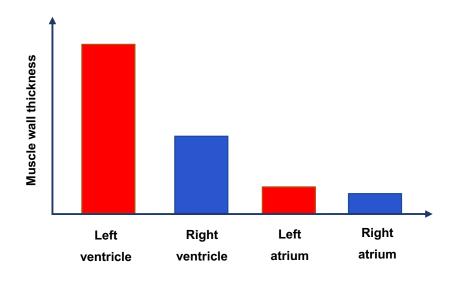


TRANSLOCATION

DEFINITION

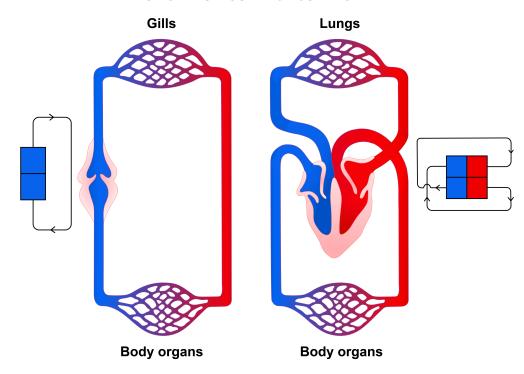
The movement of sucrose and amino acids in the phloem:

- From **source** regions that **release** sucrose or amino acids
- To sink regions that use or store sucrose or amino acids
- Phloem can transport sucrose and amino acids both up and down a plant.
- This means that some parts can be **both** a **source** and a **sink** at **different times**:


9 TRANSPORT IN ANIMALS

HEART STRUCTURE Aorta (Superior) vena cava To body organs From (upper) body **Pulmonary artery** To lungs Semilunar valves **Pulmonary vein** From lungs RA Atrioventricular valves RV **Septum** (Inferior) vena cava From (lower) body THE JOURNEY OF BLOOD **PULMONARY ARTERY** LUNGS **PULMONARY VEIN** Ventricle Haemoglobin binds with oxygen contracts **Blood becomes oxygenated LEFT ATRIUM RIGHT VENTRICLE Atrium Atrium** contracts contracts LEFT VENTRICLE **RIGHT ATRIUM** Oxygen is used in respiration Ventricle **Blood becomes deoxygenated** contracts **BODY ORGANS VENA CAVA AORTA**

STAGES OF A HEARTBEAT


Movement of blood	Atria → ventricles	Ventricles → arteries
Atria muscles	Contract	Relax
Ventricle muscles	Relax	Contract
Blood pressure	Atria > ventricles	Ventricles > arteries
Atrioventricular valves	Open	Closed
Semilunar valves	Closed	Open

RELATIVE THICKNESS OF HEART CHAMBERS

Left ventricle	Right ventricle
Thicker muscle wall	Thinner muscle wall
Pumps blood to body organs over a greater distance	Pumps blood only to the lungs over a shorter distance
Higher pressure generated	Lower pressure generated

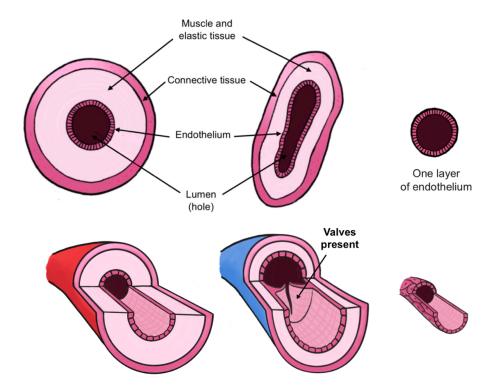
SINGLE VS. DOUBLE CIRCULATION

SINGLE CIRCULATION (FISH)	DOUBLE CIRCULATION (MAMMALS)	
Blood flows through the heart once in one complete circuit around the body	Blood flows through the heart twice in one complete circuit around the body	
Heart has 2 chambers: Oxygenated and deoxygenated blood are not separated in the heart	Heart has 4 chambers: Oxygenated and deoxygenated blood are separated completely by a septum	
Blood is not returned to the heart after passing through capillaries in the gills (So) pressure is lost	Blood is returned to the heart after passing through capillaries in the lungs (So) high pressure can be maintained	

The circulatory system is a system of blood vessels with a pump and valve to ensure one-way flow of blood

ADVANTAGES OF A DOUBLE CIRCULATION

- Generates a higher blood pressure than a single circulation
- (So) allows mammals to have higher metabolic rates
- Oxygenated and deoxygenated blood do not mix


FUNCTION OF THE SEPTUM

- Separates the left and right atria and ventricles
- Prevents oxygenated and deoxygenated blood from mixing
- Allows double circulation

FUNCTION OF HEART VALVES

- Prevent backflow of blood:
- Atrioventricular valves prevent backflow from ventricles to atria
- Semilunar valves prevent backflow from arteries to ventricles
- If the septum and valves were not present, blood leaving the heart would contain less oxygen
- (So) our cells would respire less and release less energy

TYPES OF BLOOD VESSELS

	ARTERY	VEIN	CAPILLARY
Function	Carries blood away from the heart	Carries blood back to the heart	Connects arteries & veins for exchange
Wall thickness	Thick layer of muscle and elastic tissue	Thin layer of muscle and elastic tissue	Very thin – only one layer of cells
Lumen diameter	Small	Large	Very small
Blood flow	High pressure	Low pressure	Very low pressure
Contains valves	Yes	No	Yes

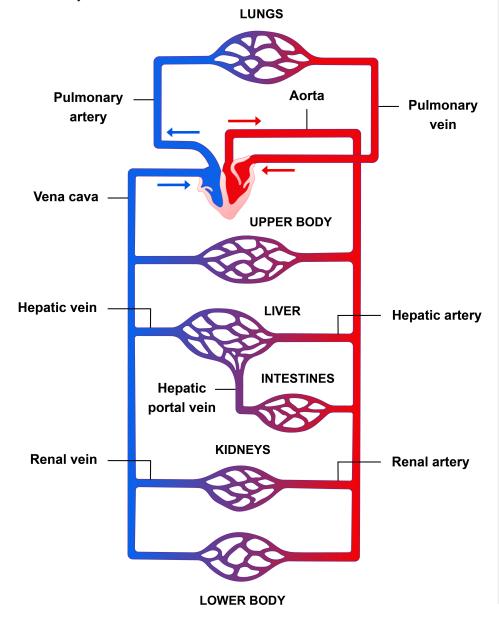
ADAPTATIONS OF BLOOD VESSELS

 The structures of arteries, veins and capillaries are adapted to suit the pressure of blood that they transport.

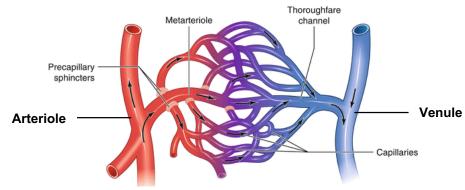
ARTERIES

STRUCTURE	HOW IT IS RELATED TO FUNCTION	
Thick wall of muscle and elastic tissue	 Withstands high blood pressure Flexible to prevent bursting Stretches and recoils to smooth out blood flow 	
Small lumen	Maintains a high blood pressure	

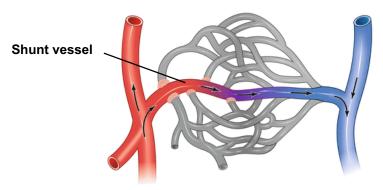
VEINS


Contains	Prevents backflow of blood due to the low
valves	blood pressure and gravity
Wide lumen	Allows blood to flow with little resistance

CAPILLARIES

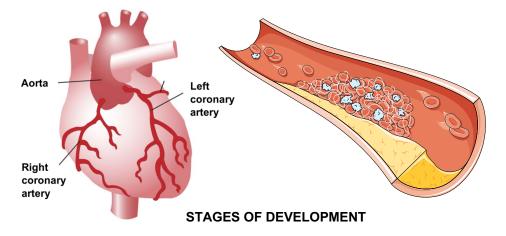

Pores in walls	Allows substances to pass in and out of the blood easily
Thin wall	Short diffusion distance for efficient exchange
Very small lumen	Allows passage of only one red blood cell at a time to maximise exchange
Large number	 Forms an extensive network (So) large surface area for diffusion Can reach every cell throughout the body

THE HUMAN CIRCULATORY SYSTEM


 Please remember the blood vessels leading to and from the heart, lungs, kidney and liver.

ARTERIOLES, VENULES AND SHUNT VESSELS

Sphincter muscles relaxed



Sphincter muscles contracted

When the body is too cold	When the body is too hot	
Arterioles constrict = vasoconstriction Less blood flow to skin capillaries	Arterioles dilate = vasodilation More blood flow to skin capillaries	
Shunt vessels dilate More blood diverted away from skin	Shunt vessels constrict Less blood diverted away from skin	
Less heat is lost from the blood	More heat is lost from the blood	

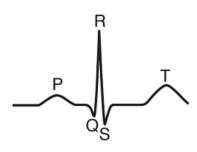
CORONARY HEART DISEASE

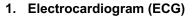
 The aorta branches off to form the coronary arteries, which supply the heart muscle with blood containing oxygen and glucose for respiration.

Fats and cholesterol are deposited in the wall of an artery

Plaque forms and cuts the artery lining, causing a blood clot to form

A coronary artery becomes blocked by a blood clot, causing blood flow to the heart muscle to be restricted


The heart muscle receives less oxygen and glucose (So) it respires less and releases less energy


Complete blockage may cause part of the heart muscle to stop contracting, leading to a heart attack

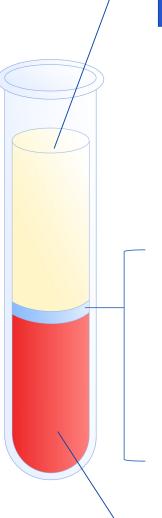
RISK FACTORS

CAN CHANGE	CANNOT CHANGE
Diet high in saturated fat (cholesterol)	Age
Diet high in salt	Gender
Alcohol	Genetics
Smoking cigarettes	Race
Lack of exercise	
Stress	

MONITORING HEART ACTIVITY

2. Listening to sounds of valves closing

RADIAL PULSE (WRIST)



CAROTID PULSE (NECK)

3. Measuring pulse rate

10 DISEASES AND IMMUNITY

COMPOSITION OF BLOOD

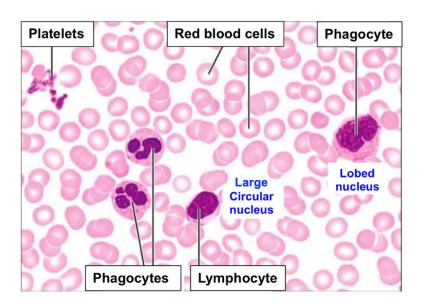
BLOOD PLASMA (92% WATER)

Transport of:

- Blood cells
- lons
- Proteins
- Nutrients
- Urea and carbon dioxide
- Hormones

WHITE BLOOD CELLS

- Lymphocytes produce antibodies
- Phagocytes engulf pathogens by phagocytosis

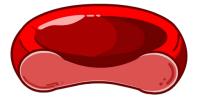

PLATELETS

Fragments of cells involved in blood clotting

RED BLOOD CELLS

Contain haemoglobin to transport oxygen

A MICROSCOPE SLIDE OF BLOOD


ADAPTATIONS OF A RED BLOOD CELL

Biconcave disc shape

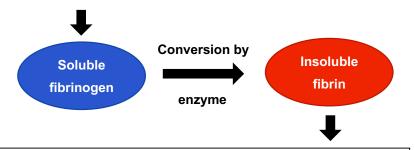
Large surface area for fast diffusion of oxygen

Large amount of haemoglobin

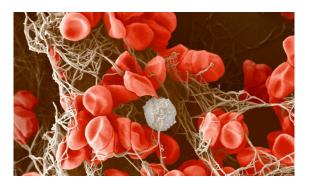
Can attach to and release oxygen

Flexible membrane

To squeeze through small capillaries


No nucleus or cell organelles

More space for haemoglobin to transport more oxygen


BLOOD CLOTTING

 Blood clotting occurs in a successive series of reactions, triggered by platelets and ending in the conversion of fibrinogen to fibrin.

When a blood vessel is cut, platelets release proteins called clotting factors that cause an enzyme to be produced.

Fibrin forms a mesh that traps red blood cells to form a clot, which then dries and hardens into a scab.

TWO ROLES OF BLOOD CLOTTING:

- Prevents further loss of blood
- Prevents pathogens from entering the body

TRANSMISSIBLE DISEASES

Pathogen

- A disease-causing organism
- E.g. bacteria, fungi, protozoa and viruses

Transmissible disease

 A disease caused by a pathogen, which can be passed from one host to another

Transmission

DIRECTLY

Body-to-body contact through fluids such as:

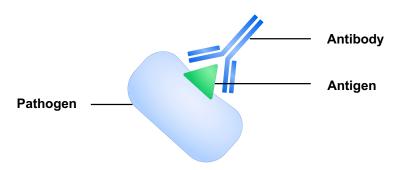
- Blood
- Sexual fluids

INDIRECTLY

- Air
- Food
- Water
- Surfaces
- Animal bites

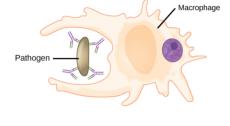
Most diseases that are not caused by pathogens are not transmissible:

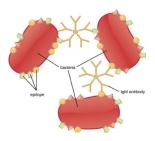
- Examples are CHD, most cancers, diabetes and malnutrition diseases.
- Type 1 diabetes is an autoimmune disease caused by our body's own antibodies attaching to and destroying pancreas cells that make insulin.

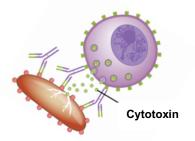

THE BODY'S DEFENCES AGAINST PATHOGENS

Skin	Impermeable covering that contains glands that secrete fatty acids to reduce bacterial growth	
Nose hairs	Trap pathogens in inhaled air	
Mucus	Traps pathogens that enter the trachea, helping cilia to move them to the throat	
Stomach acid	Kills bacteria in food	
Lymphocytes	Produce antibodies that attach to and destroy specific pathogens	
Phagocytes	Engulf and digest pathogens using enzymes (Non-specific as they may kill any type of pathogen)	

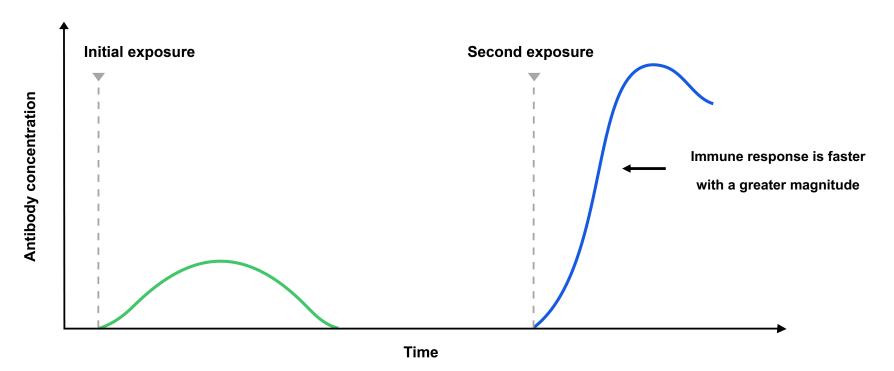
CONTROLLING THE SPREAD OF DISEASE


HOW ANTIBODIES WORK

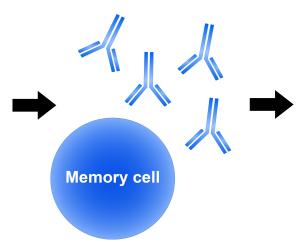

- Each pathogen has its own antigens, which have specific shapes.
- Antibodies are proteins that have specific binding sites with complementary shapes which fit specific antigens.
- Here are some ways in which antibodies can work (don't need to memorise):


Neutralisation – coat pathogens to prevent them from binding to target cells

Opsonisation – mark pathogens for destruction by phagocytes


Agglutination – 'clump' pathogens together for easier destruction

Activate proteins that can cause cell lysis and inflammation


PRIMARY IMMUNE RESPONSE – 1ST ENTRY OF PATHOGEN

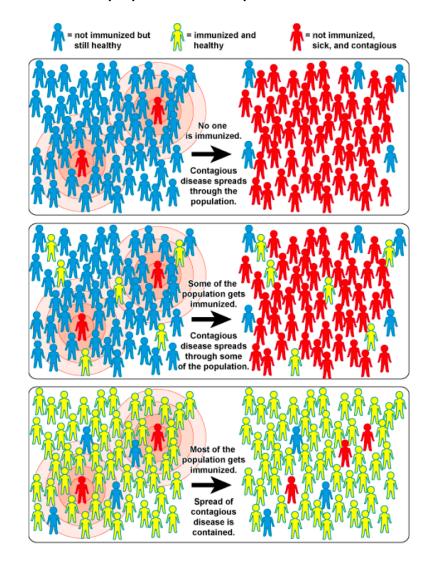
SECONDARY IMMUNE RESPONSE - RE-INFECTION BY SAME PATHOGEN

- The pathogen's antigen triggers lymphocytes to produce specific antibodies, but this takes time.
- Meanwhile, the pathogen can reproduce quickly so we become ill.
- Antibodies eventually destroy the pathogen, allowing us to recover.

Specific lymphocytes divide to produce memory cells, which remain in the blood for a long time.

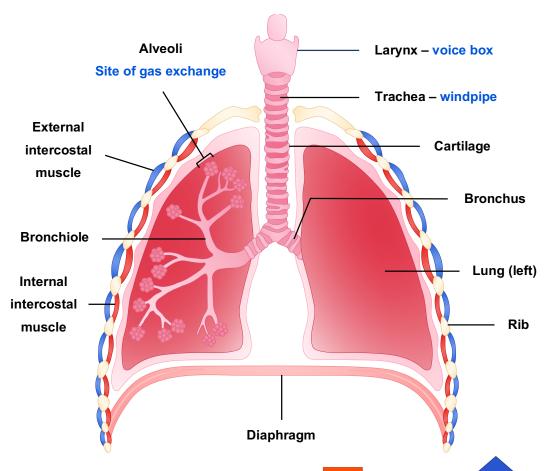
- Memory cells remain from the first infection to give long-term immunity.
- These make sure that antibodies will be produced faster and in a greater amount if infected by the same pathogen again in the future.

VACCINATION


- 1. A vaccine containing a weakened pathogen or its antigens is injected into the body.
- 2. The antigens trigger an immune response by lymphocytes, which produce specific antibodies with a complementary shape.
- 3. These antibodies attach to and destroy the pathogen.
- 4. Memory cells are produced that remain to give long-term immunity.
- 5. (So) rapid immune response will occur if re-infected by the same pathogen.

ACTIVE VS PASSIVE IMMUNITY

	Active immunity	Passive immunity
Meaning	Long-term defence against a pathogen by antibody production in the body	Short-term defence against a pathogen by antibodies acquired from another individual
Where the antibodies come from	Your own body	From another person or animal
Memory cells	Yes	No
Efficiency	Slower response on first exposure to antigen	Gives immediate protection
Examples	Gained after infection by a pathogen or vaccination	 Antibodies pass from mother to baby across the placenta and in breast milk Injecting antibodies in anti- venom to treat snake bites


CONTROLLING THE SPREAD OF DISEASE

- Herd immunity can be achieved when a high percentage of a population is vaccinated.
- This makes it difficult for an infectious disease to spread as there
 will be few people that are susceptible.

11 GAS EXCHANGE IN HUMANS

STRUCTURE OF THE BREATHING SYSTEM

Function of cartilage rings

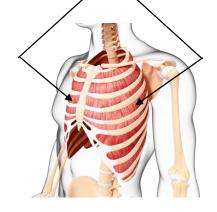
- Protects and supports the trachea and bronchi
- Allows free flow of air into the lungs
- Allows flexibility for breathing

Air leaves the lungs

Trachea

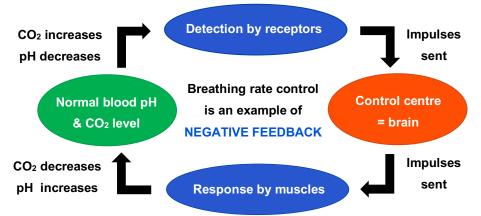
Bronchi

Bronchioles

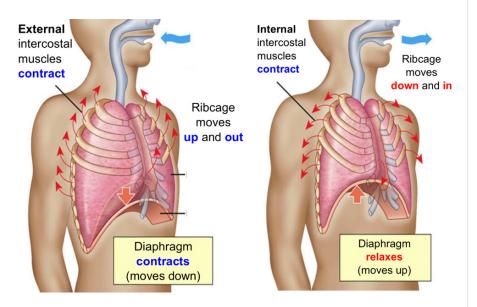

Alveoli

CONTROL OF BREATHING RATE

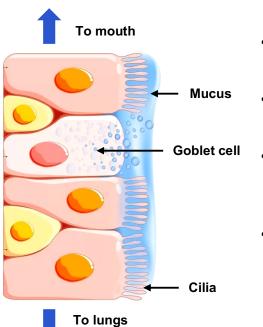
BRAIN contains receptors that detect


- an increase in blood CO₂ concentration
- a decrease in blood pH

more impulses sent to intercostal muscles and diaphragm muscle

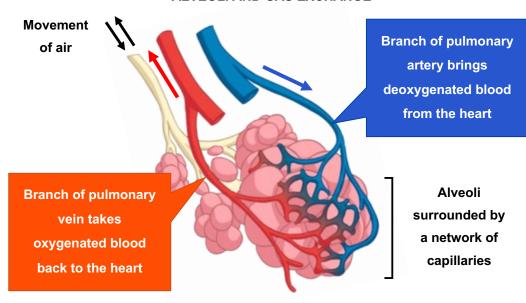

intercostal muscles
and diaphragm muscle
contract more frequently

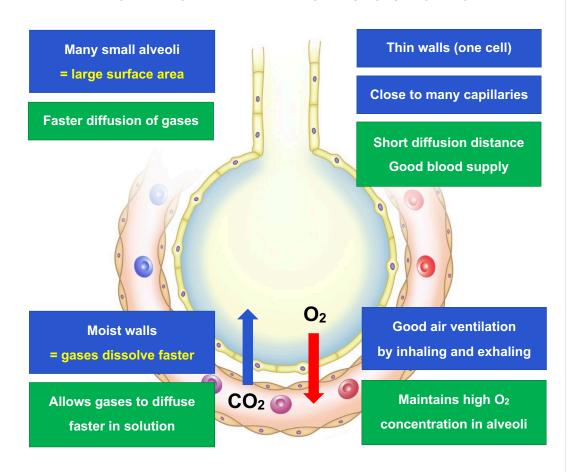
breathing is faster and deeper, so more CO₂ is exhaled and removed from the blood


Increased rate and depth of breathing

HOW WE BREATHE IN AND OUT

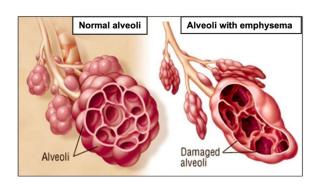
	Inhaling	Exhaling	
Ext intercostal muscles	Contract	Relax	
Int intercostal muscles	Relax Contract		
Ribcage moves	Up and out	Down and in	
Diaphragm	Contracts (moves down)	Relaxes (moves up)	
Volume of thorax	Increases	Decreases	
Air pressure in thorax (lungs)	Decreases	Increases	
Air moves	HIGH → LOW PRESSURE		
Direction	Enters chest	Leaves chest	


THE BREATHING SYSTEM'S DEFENCE AGAINST PATHOGENS

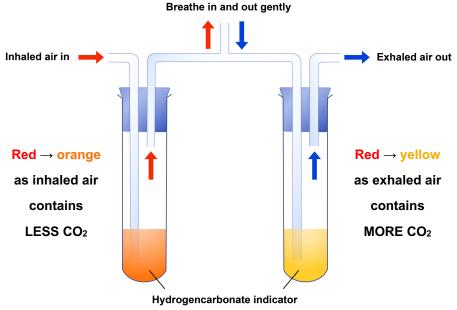

- Pathogens in inhaled air are trapped by nose hairs.
- Goblet cells produce sticky

 mucus which traps pathogens
- Cilia lining the trachea 'beat' to move mucus up and out towards the mouth
- The mucus is then swallowed, and pathogens are killed by stomach acid and phagocytes.

ALVEOLI AND GAS EXCHANGE


HOW ALVEOLI ARE ADAPTED FOR FAST GAS EXCHANGE

COMPOSITION OF INHALED AIR VS. EXHALED AIR


Gas	Inhaled air / %	Exhaled air / %	Reason for difference
OXYGEN	21	16	Used in respiration
CARBON DIOXIDE	0.04	4	Produced in respiration
WATER VAPOUR	Small amount	Larger amount	Produced in respiration
NITROGEN	78	78	Not used in the body

EMPHYSEMA

- Alveoli walls break down
- (So) alveoli have a lower surface area
- (So) slower diffusion of oxygen into the blood
- (So) less respiration so less energy released
- (So) feel more tired

TESTING FOR CO2 IN INHALED AND EXHALED AIR

12 RESPIRATION

Aerobic respiration

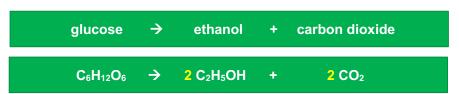
The **chemical reactions** in cells that **use oxygen** to **break down nutrient** molecules and **release energy**

glucose + oxygen
$$\rightarrow$$
 carbon dioxide + water
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

Uses of energy released

- Growth and repair
- Muscle contraction
- Cell division
- Metabolic reactions

- Protein synthesis
- Active transport
- Passage of nerve impulses
- Maintaining body temperature


Anaerobic respiration

The chemical reactions in cells that do not use oxygen to break down nutrient molecules and release energy

In muscles

glucose → lactic acid	
-----------------------	--

In yeast

	Aerobic respiration	Anaerobic respiration
Oxygen needed	Yes	No
Uses	Glucose or fats	Glucose only
Amount of energy released per glucose molecule	More Glucose molecules are broken down completely into CO₂ and water	Less Glucose molecules are partially broken down – energy is 'trapped' in lactic acid (C₃H₅O₃)
Products	CO ₂ and water	Humans – lactic acid only Yeast – alcohol and CO ₂
Controlled by enzymes	Both – rate of respiration is affected by temperature and pH	

EFFECT OF EXERCISE ON BREATHING AND HEART RATE

- Muscles contract harder
- Demand of energy and oxygen increases
- Rate of aerobic respiration increases

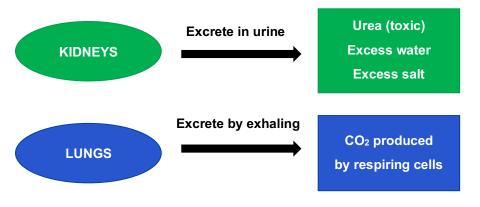
An increase in pulse rate and breathing rate allows:

- More blood containing glucose and oxygen to be supplied to the muscles
- More CO₂ to be transported to the lungs and exhaled from the body
- More heat loss through increased blood circulation

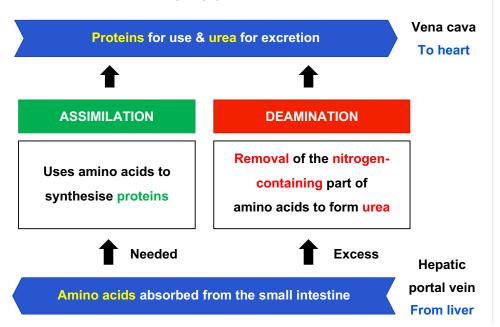
If demand of oxygen exceeds availability...

- Oxygen is not supplied to muscles fast enough from the heart / lungs
- Muscles respire anaerobically and produce lactic acid
- Lactic acid builds up in muscles, causing an oxygen debt to develop
- An equal amount of extra oxygen is needed after exercise to break down all lactic acid and "pay off" the debt

Immediately
after stopping
exercise

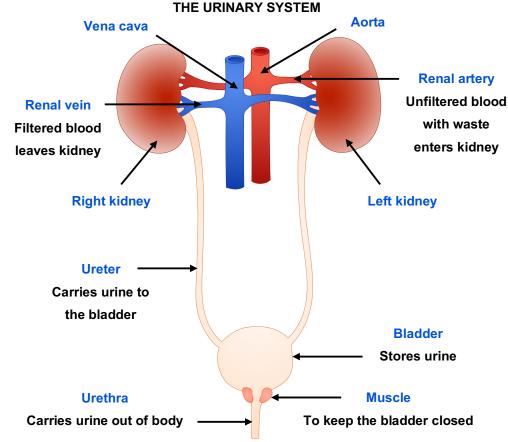

- Pulse rate continues to be high
- Breathing continues to be faster and deeper
- (So) more oxygen supplied to muscles and liver to break down lactic acid
- Lactic acid diffuses from muscles into blood, which transports it to the liver
- In the liver, lactic acid is broken down by aerobic respiration, or used to rebuild glucose molecules.

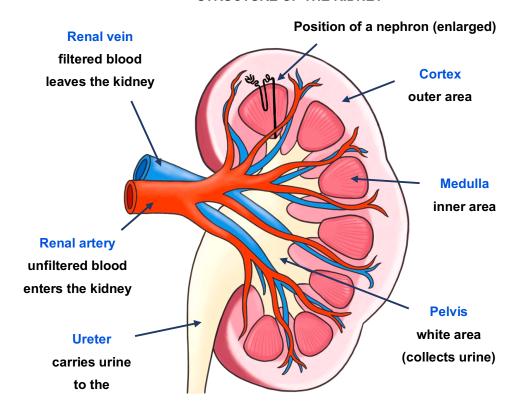
13 EXCRETION IN HUMANS


EXCRETION

Removal from the organism of waste products of metabolism and substances in excess of requirements

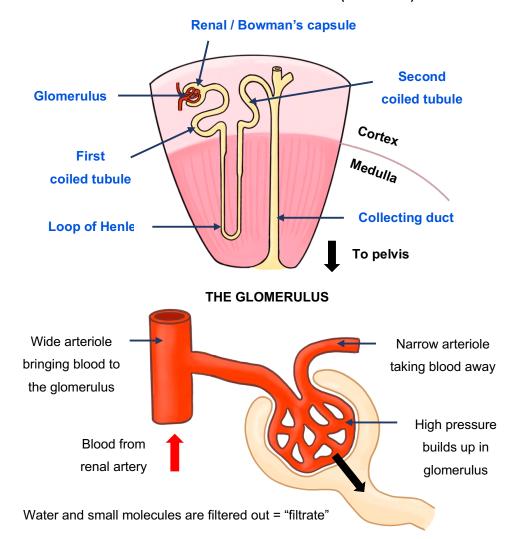
TWO MAIN EXCRETORY ORGANS


ROLES OF THE LIVER


EGESTION VS. EXCRETION

• Egestion is generally not considered as a part of excretion.

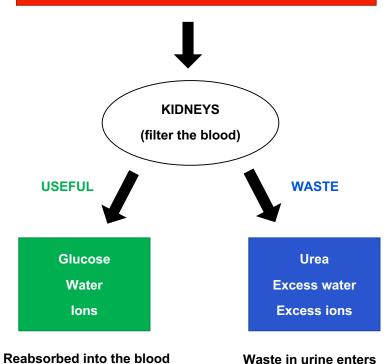
Egestion	Excretion
A part of digestion	A separate life process
Removes undigested food in faeces	Removes waste products of
(unaffected by human digestive	metabolic reactions
enzymes – not a product of metabolism)	e.g. urine, CO ₂ , sweat
Through the anus	Through excretory organs



STRUCTURE OF THE KIDNEY

	Renal artery	In the kidney	Renal vein
Urea	More	Large amounts are removed in urine	Less
Water & ions	More	Reabsorbed and excess is removed	Less
Glucose & oxygen	More	Used by kidney cells in respiration	Less
Carbon dioxide	Less	Produced by kidney cells in respiration	More

STRUCTURE OF A KIDNEY TUBULE (NEPHRON)


- The glomerulus is a ball-shaped knot of capillaries, surrounded by the Bowman's capsule at one end of each nephron.
- It provides blood at high pressure to speed up filtration.
- Glomerular capillary walls and the adjacent wall of the Bowman's capsule contain pores through which blood is filtered into the kidney tubule.

REABSORPTION AND URINE FORMATION IN A NEPHRON

Glomerulus = site of filtration **BRANCH OF RENAL ARTERY** brings unfiltered blood Small molecules are filtered out = glucose, water, ions, urea Large molecules stay in the blood = proteins, blood cells Water is reabsorbed **BOWMAN'S CAPSULE** Second coiled tubule along the kidney tubule. contains pores (So) the concentration for filtration of urea, ions and toxins in urine is higher than in the filtrate as urine contains less water. **BRANCH OF RENAL VEIN** takes away filtered blood First coiled tubule **Collecting duct** All of the glucose **Urine containing:** Most of the water **Controls** the amount Urea Some of the ions of water absorbed **Excess water** Are reabsorbed back into the blood according to the **Excess ions** body's needs **Toxins** The reabsorption of glucose usually takes place by **active transport**, as glucose concentration in the filtrate is often lower than in blood. Epithelial cells of the first coiled tubule are specialised for this -Loop of Henle they contain many mitochondria and are lined with microvilli. To ureter and bladder

TWO CHOICES

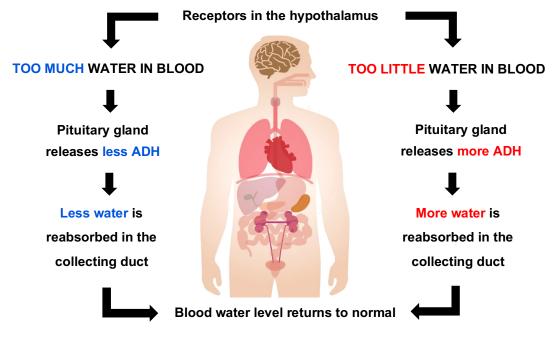
Renal artery takes unfiltered blood containing useful substances and waste to the kidneys

= NOT LOST FROM BODY

by the renal vein

SUMMARY – THREE ROLES OF THE KIDNEYS

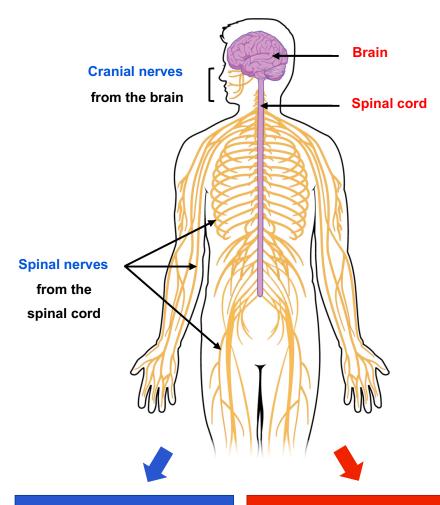
ureter → bladder


= LOST FROM BODY

- Produce urine to get rid of waste from the blood
- Reabsorb useful substances back into the blood
- Control the amount of water and ions in the blood

URINE FORMATION

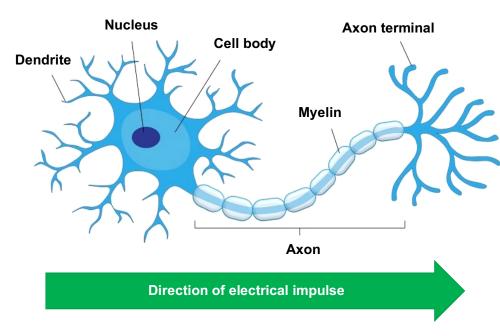
Substance	Filtered through Bowman's capsule?	How much is reabsorbed in the first coiled tubule?	Should it appear in urine?
GLUCOSE	Yes	All	No
WATER	Yes	Most	Yes – excess
IONS	Yes	Some	Yes – excess
PROTEINS	No	None	No
RED BLOOD CELLS	No	None	No
UREA	Yes	None	Yes


OSMOREGULATION BY THE KIDNEYS

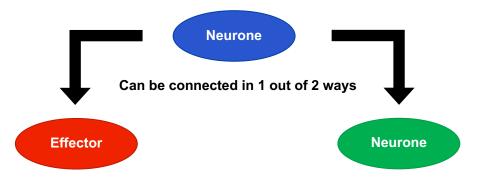
• The anti-diuretic hormone (ADH) causes the collecting duct to reabsorb more water.

14 COORDINATION AND RESPONSE

THE HUMAN NERVOUS SYSTEM

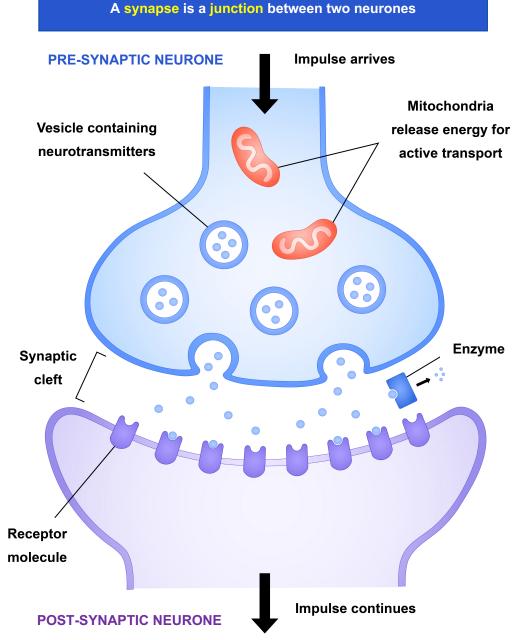

Peripheral nervous system

Nerves that start from the brain or spinal cord and lead to other body organs


Central nervous system (CNS)

- Brain
- Spinal cord

STRUCTURE OF A NEURONE



- Long axon = can transmit impulses quickly over long distances.
- Myelin sheath (made of protein and fats) insulates the axon, which speeds up the transmission of electrical impulses.

An impulse must cross a synapse in order to be passed on from one neurone to the next

SYNAPSE BETWEEN TWO NEURONES

Impulse triggers vesicles to fuse with the (pre-synaptic) cell membrane

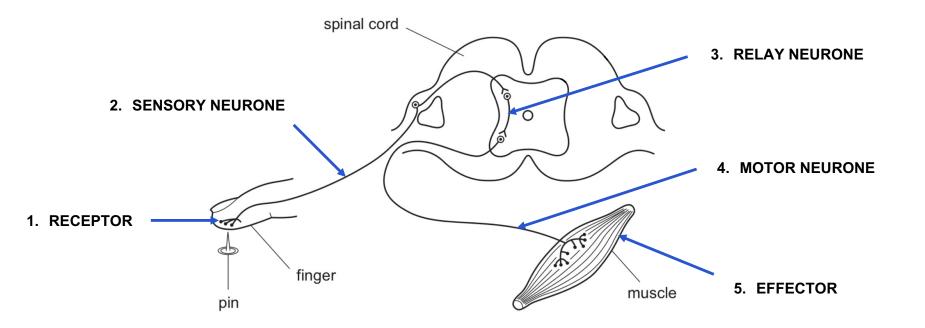
Neurotransmitters are released from vesicles into the synaptic cleft

Neurotransmitters diffuse across the synaptic cleft and bind to specific receptors on the membrane of the next neurone

An electrical impulse is then stimulated in the next neurone, allowing the message to continue

Neurotransmitters are broken down by enzymes in the synapse

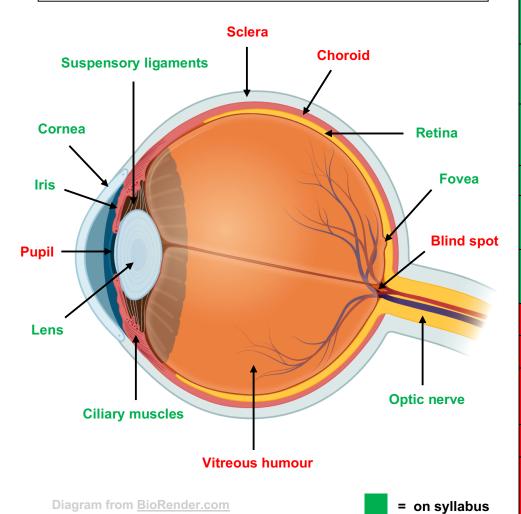
ENERGY CHANGES



- Electrical impulses travel from the dendrites to nerve endings of a neurone.
- Since the vesicles that release neurotransmitters are only found at the nerve endings, impulses can only pass in one direction across a synapse.

GENERAL PATHWAY FOR NERVE IMPULSES

A change in the environment	Cells that detect the change	Processes this information	Corrects the change	What finally happens	
Stimulus	Receptor	Coordinator	Effector	Response	
Temperature	Skin – thermoreceptors	Central nervous	Muscle which		
Pressure / sound	Skin – mechanoreceptors	system (CNS)	contracts		
Light	Eye – photoreceptors	OR	OR		
Chemicals	Nose / tongue – chemoreceptors	Spinal cord only	Gland which secretes		
			fluid or enzymes		


A REFLEX ARC

STRUCTURE OF THE EYE

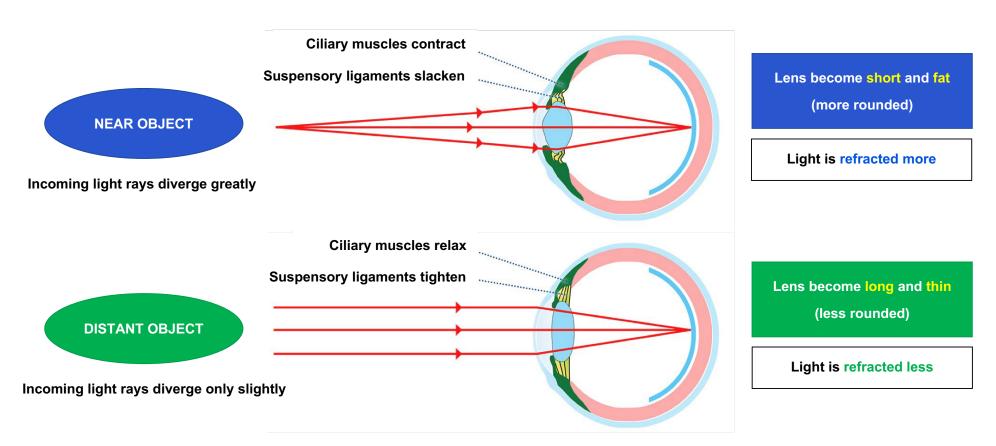
Sense organs are groups of receptor cells responding to specific stimuli: light, sound, touch, temperature and chemicals.

The eye is a sense organ that reacts to light and allows vision.

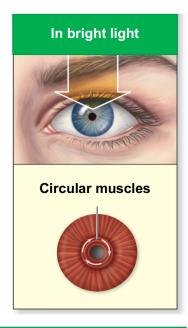
Structure	Function	
Cornea	Transparent and refracts light onto the lens	
Lens	Refracts and focuses light onto the fovea	
Retina	Light-sensitive tissue Contains light receptor cells (rods and cones)	
Fovea	A pit in the retina which gives the most detailed image Contains only and the highest concentration of cone cells	
Optic nerve	Made up of sensory neurones Carries electrical impulses to the brain	
Iris	Controls how much light enters the pupil	
Suspensory ligaments	Slacken or tighten to change the shape of the lens for focusing	
Ciliary muscles	Contract or relax to change the shape of the lens for focusing	
Pupil	A hole which allows light to enter	
Blind spot	Where the optic nerve leaves the eye – no light receptors	
Choroid	Contains a black pigment to absorb light and stop it being reflected back out of the eye	
Sclera	Tough, white protective layer	
Vitreous humour	Jelly-like and it maintains the inside pressure and shape of the eye	

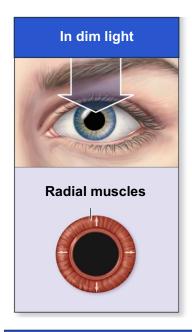
HOW WE SEE A FOCUSED IMAGE

Light rays reflect
off from an object
and enter the
cornea


Cornea
refracts the
light rays
inwards

Light rays pass through the pupil and lens Shape of the lens
is changed so that
it refracts light
either more or less

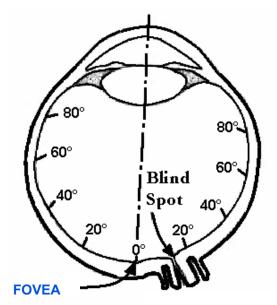

Light rays are focused onto the retina, stimulating light receptors


Light receptors
generate electrical
impulses which are
sent to the brain
along the optic nerve

ACCOMMODATION (FOCUSING)

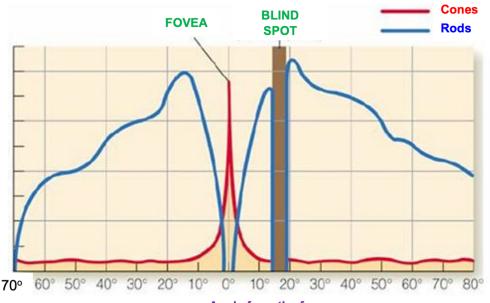
THE PUPIL REFLEX

Circular muscles contract
Radial muscles relax


Circular muscles relax

Radial muscles contract

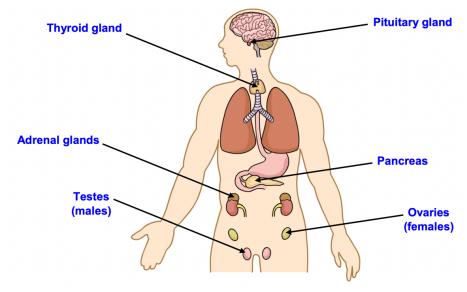
ROD AND CONE CELLS


	RODS	CONES
Light sensitivity	High	Low
Work in	Dim light (night vision)	Bright light (day vision)
Vision	Black and white	Colour
Number of types	One	Three that respond to red, green & blue light

RELATIVE DISTRIBUTION IN THE RETINA

most cone and no rods

OPTIC NERVE - no light receptors



Angle from the fovea

HORMONES

A hormone is a chemical, produced by a gland and carried by the blood, which alters the activity of one or more specific target organs.

- The hormonal system is also known as the endocrine system.
- Hormones are made by endocrine glands (ductless glands) which release them directly into the bloodstream.
- Some endocrine glands also have exocrine functions (such as the pancreas).

Endocrine gland	Main hormone(s) it secretes
Pituitary gland	FSH and LH
Adrenal glands	Adrenaline
Pancreas	Endocrine – insulin and glucagon
Testes	Testosterone
Ovaries	Oestrogen and progesterone

ADRENALINE

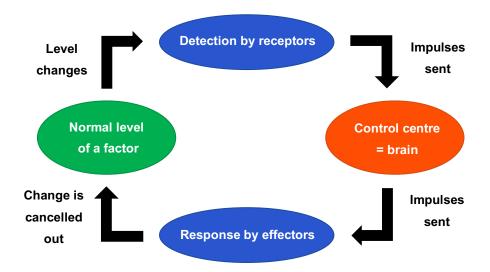
- Produced by the adrenal glands.
- When we are **nervous**, **frightened** or **excited = 'fight or flight'** situations.
- Adrenaline controls our metabolic activity and can get us away from danger fast.
- It acts on a variety of organs:

Target organ	Effect	
HEART	Heart rate increases	
LUNGS	Breathing rate increases	
LIVER	Stimulates breakdown of glycogen to glucose , causing blood glucose concentration to increase	
EYES	Pupils dilate	
MUSCLE	Arterioles in muscle dilate (widen)	
SKIN / GUT	Arterioles in skin / gut constrict	

This ensures that:

- More glucose and oxygen are diverted to muscles
- (So) more respiration
- (So) more energy released
- (So) more muscle contraction
- · To allow us to run faster

Blood is diverted away from the skin and gut as temperature control and digestion are less important when in danger

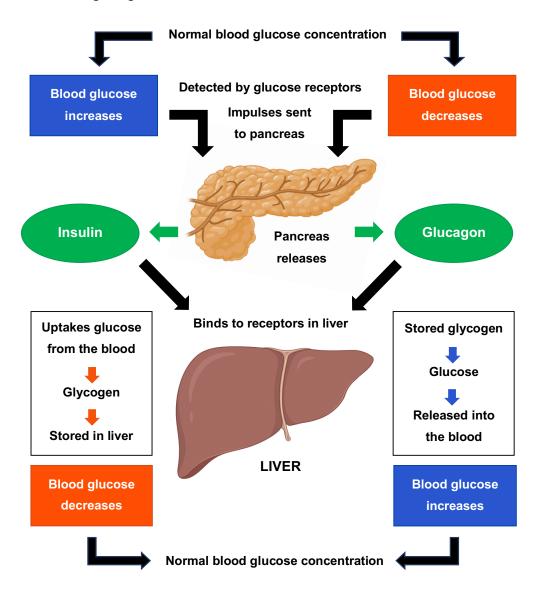

HOMEOSTASIS

Homeostasis is the maintenance of a stable internal environment.

It is the control of internal conditions within set limits.

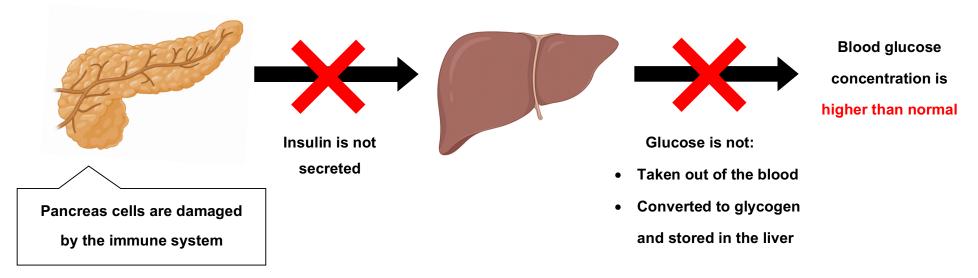
- Homeostasis is achieved by negative feedback, a process where a change automatically sets off a response that offsets that change itself.
- Negative feedback allows a level to return to normal, often because a hormone is switched off.

NEGATIVE FEEDBACK LOOP



Examples of negative feedback in the human body:

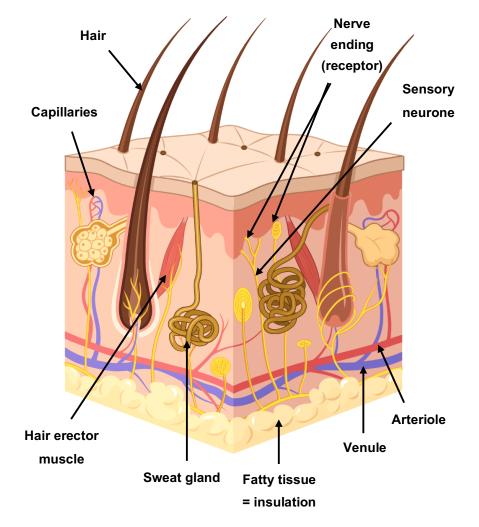
- Control of blood glucose concentration
- Control of body temperature
- Control of water and salt balance (by the kidneys)
- · Control of breathing rate


CONTROLLING BLOOD GLUCOSE CONCENTRATION

- Controlled by two hormones produced by the pancreas: insulin and glucagon.
- The target organ of these hormones is the liver.

Glycogen is larger than glucose and insoluble, making it ideal as a storage sugar.

TYPE 1 DIABETES



• Treatment involves: insulin injections, regular blood glucose tests, less carbohydrates in diet, regular meals and exercise.

COMPARING THE NERVOUS AND ENDOCRINE

	NERVOUS SYSTEM	ENDOCRINE SYSTEM
Structures involved	Nerves	Glands
Form of information	Electrical impulses	Chemical hormones
Pathway	Along neurones (to specific effectors)	Transported in blood (throughout the body)
Area of response	Localised	Widespread
Speed of transmission	Faster	Slower
Duration of effects	Short-lived	Longer lasting

STRUCTURE OF SKIN

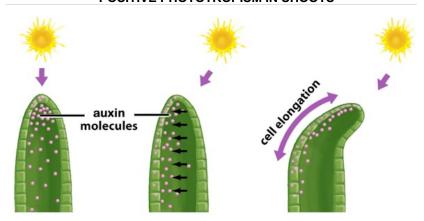
CONTROLLING BODY TEMPERATURE

- Temperature receptors detect the change in temperature of the skin and blood.
- The hypothalamus in the brain coordinates a response by sending electrical impulses to muscles and sweat glands.

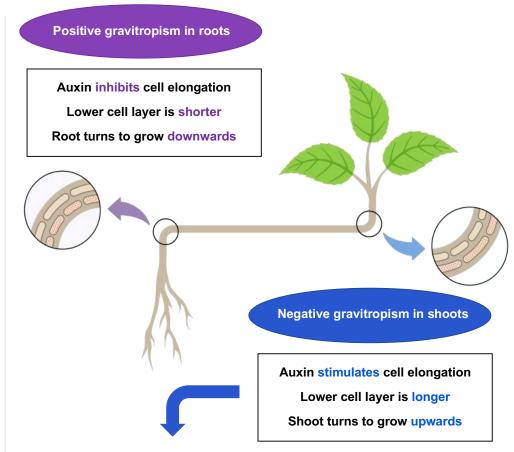
	T00 H0T	TOO COLD
SWEATING	Increases More sweat evaporates from skin surface so more heat is lost	Decreases Less sweat evaporates from skin surface so less heat is lost
ARTERIOLES	Muscles relax Widen = vasodilation More blood flows to skin surface capillaries so more heat is lost	Muscles contract Narrower = vasoconstriction Less blood flows to skin surface capillaries so less heat is lost
SHUNT VESSELS	Constrict	Dilate
SHIVERING	Decreases	Increases Muscles contract more often Respiration increases More heat energy released
HAIRS ON SKIN	Hair erector muscles relax Hairs do not stand up Allows movement of air across the skin Less air insulation	Hair erector muscles contract Hairs stand up A layer of air is trapped between them More air insulation

PLANT TROPISMS

Phototropism

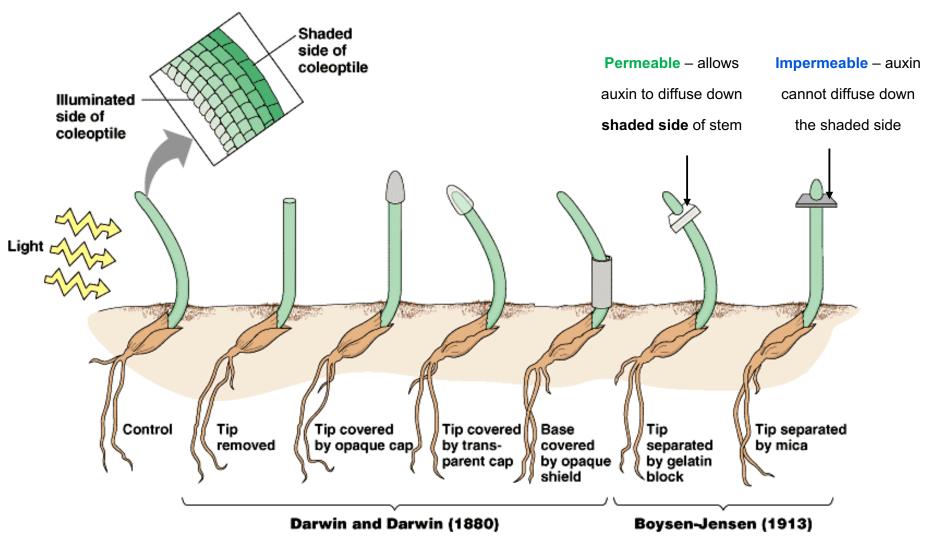

A response in which parts of a plant grow towards or away from the direction of the light source

Gravitropism


A response in which parts of a plant grow towards or away from the direction of gravity

	Shoots	Roots	
Phototropism	Positively phototropic towards light	Negatively phototropic away from light	
Gravitropism	Negatively gravitropic opposite direction as gravity	Positively gravitropic same direction as gravity	

POSITIVE PHOTOTROPISM IN SHOOTS



- Auxin is produced at the shoot tip.
- Light is detected by the shoot tip, causing more auxin to diffuse down the shaded side of the stem than the side facing light.
- Accumulation of auxin causes more cell elongation on the shaded side by making cells absorb more water, so the shoot bends towards the light.

- Auxin is produced at the shoot tip.
- Gravity is detected (by organelles called statoliths), causing more auxin to diffuse across the stem and collect on the lower side.
- Auxin causes more cell elongation on the lower side, so the shoot bends upwards away from the pull of gravity.
- Scientists believe that both root and shoot growth are affected by auxin.
- It is thought that root and shoot cells have different levels of sensitivity to auxin, so that the same concentration of auxin inhibits cell elongation in roots but stimulates cell elongation in shoots.

EXPERIMENTS ON PHOTOTROPIC RESPONSES

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

15 DRUGS

DEFINITION

A drug is any substance taken into the body that modifies or affects chemical reactions in the body

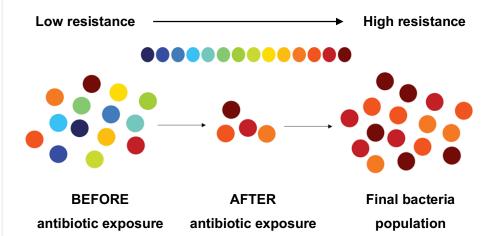
HOW ANTIBIOTICS WORK

- Antibiotics are drugs used to treat bacterial infections.
- Antibiotics kill bacteria by acting on targets that are absent or different in human cells, so that our cells will not be harmed.
- They do not affect viruses which do not have any antibiotic targets.

PREVENT CELL WALL SYNTHESIS

- (So) bacteria will burst (lyse)
- Human cells do not have cell walls

PREVENT PROTEIN SYNTHESIS

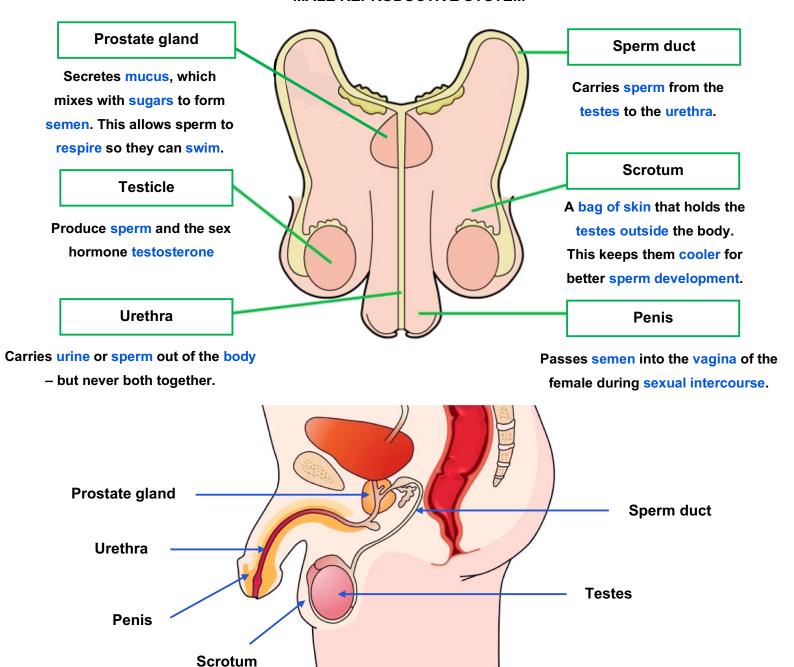

- (So) bacteria cannot make enzymes
- Human ribosomes have a different structure

PREVENT DNA SYNTHESIS

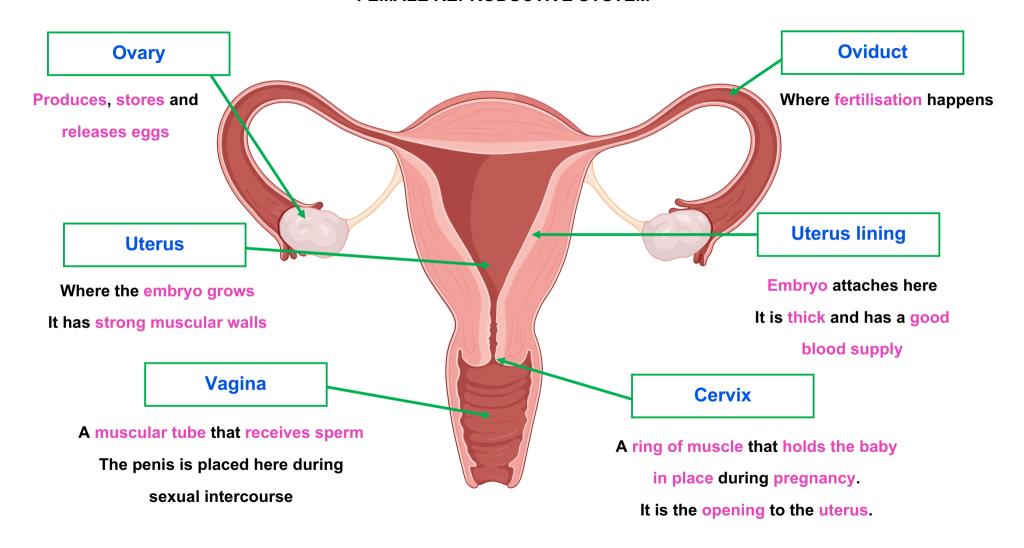
- (So) bacteria cannot reproduce
- Human enzymes used to make new DNA have a different structure

ANTIBIOTIC RESISTANT BACTERIA

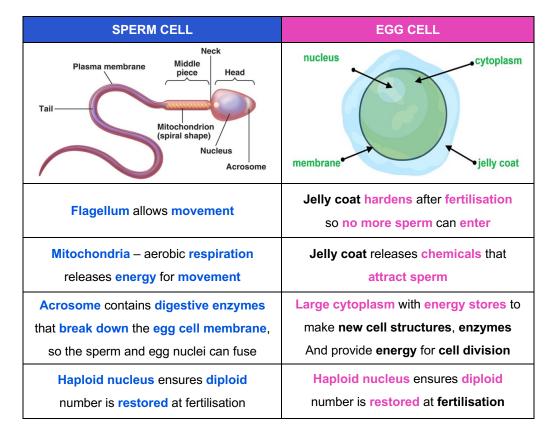
- Antibiotic resistance can develop in populations of bacteria,
 which reduces the effectiveness of antibiotics.
- MRSA is a type of bacteria that is resistant to several antibiotics.



MINIMISING DEVELOPMENT OF ANTIBIOTIC RESISTANCE

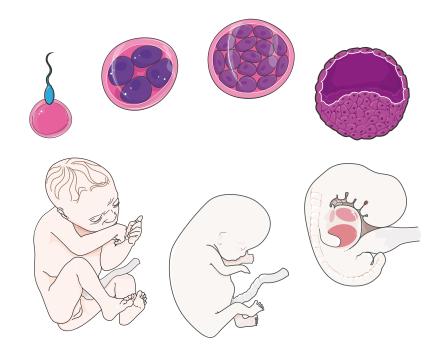

- 1. Doctors should **prescribe** antibiotics **less often**.
- 2. Do not prescribe antibiotics for viral infections.
- 3. Make sure people **complete the full course** of antibiotics.
- 4. Use different combinations of antibiotics.
- 5. Do not use the same antibiotic for too long.
- **6. Reduce** the use of antibiotics in **farming** (e.g. cattle).
- 7. Isolate patients with antibiotic-resistant strains of bacteria.

16 REPRODUCTION IN HUMANS


MALE REPRODUCTIVE SYSTEM

FEMALE REPRODUCTIVE SYSTEM

SPERM AND EGG CELLS


	SPERM CELL EGG CELL		
Size	Small	Larger	
Mobility	Motile	Not motile	
Structure	Flagellum Many mitochondria Acrosome	Large cytoplasm Jelly coat	
Food store	No	Yes	
Number released	Millions (many)	One per month (few)	
When produced	Puberty	Before birth	

FERTILISATION

Fusion of the nuclei from the male gamete (sperm) and female gamete (egg) to form a diploid zygote

EMBRYO DEVELOPMENT

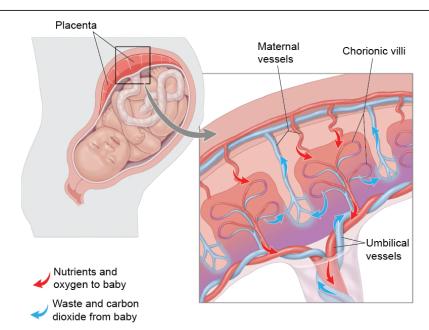
- The single fertilised egg (zygote) divides by mitosis to form an embryo (a ball of cells).
- The embryo travels down the oviduct to the uterus, and implants into the uterus lining.
- The placenta releases progesterone to maintain the uterus lining.
- Exchange of substances between the mother and fetus occurs through the placenta and umbilical cord by diffusion.

Uterus Cervix

DURING PREGNANCY

Contains amniotic fluid that has many functions:

AMNIOTIC SAC

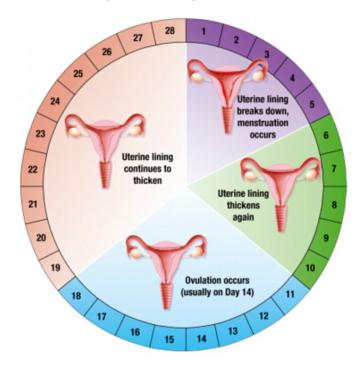

- acts as a shock absorber to protect the fetus from knocks
- maintains the temperature
- provides a sterile environment
- provides support
- provides lubrication
- allows some movement of the fetus

PLACENTA

- Exchanges materials between maternal and fetal blood without direct contact –
 they are separated by a membrane.
 - Dissolved nutrients and O₂ to the child
 - Waste such as CO2 and urea to mum
- 2. Protects the fetus:
 - From the mother's immune system
 - Against dangerous fluctuations in the mother's blood pressure
- 3. A barrier to toxins and pathogens (but not nicotine or rubella virus)
- 4. Produces most progesterone during pregnancy to maintain the uterus lining.

UMBILICAL CORD

- Connects the placenta to the fetus
- Carries dissolved nutrients, gases and waste between the two



MALE AND FEMALE SEX HORMONES

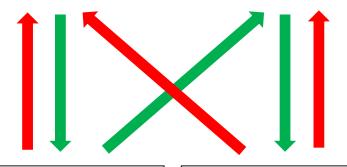
Testosterone	Oestrogen	
Boy → Man	Girl → Woman	
Growth of male sex organs	Growth of female sex organs	
Testes make sperm cells	Start of menstrual cycle	
Facial hair growth	Body parts grow hair	
Voice deepens	Breasts develop	
Muscle growth	Hips widen	

THE MENSTRUAL CYCLE

- Prepares a woman's body for pregnancy by thickening the uterus lining and releasing an egg (ovulation).
- A period marks the very start of this cycle.

HOW HORMONES CONTROL THE MENSTRUAL CYCLE

- The pituitary gland releases the hormones FSH and LH.
- The **ovaries** release the hormones **oestrogen** and **progesterone**.


START

FSH

Ripens an egg
Stimulates oestrogen release

LH

Causes ovulation
Stimulates progesterone release

OR

Oestrogen

Thickens uterus lining
Stimulates LH release

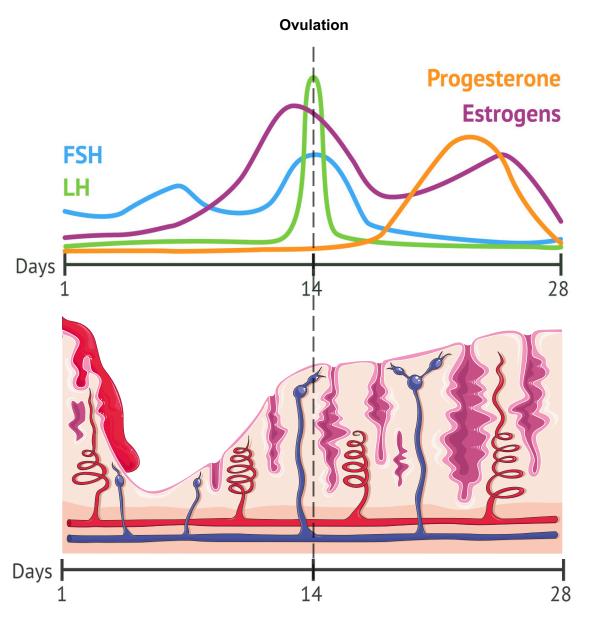
Progesterone

Thickens uterus lining
Inhibits FSH and LH release

EGG IS FERTILISED

Progesterone level increases

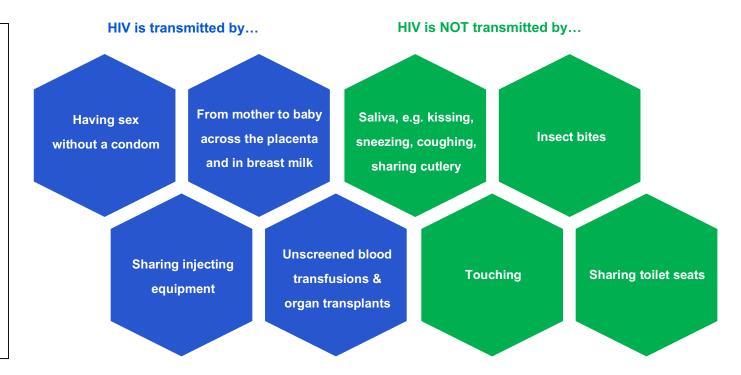
EGG IS NOT FERTILISED


FSH and LH are inhibited

Stops ripening / releasing of eggs

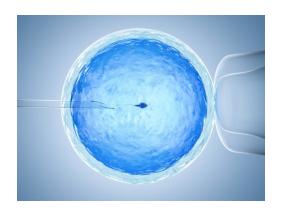
Thick uterus lining is maintained

Uterus lining leaves the body
with blood (a period)
Menstrual cycle restarts


HORMONE LEVELS DURING THE MENSTRUAL CYCLE

• The optimum conditions for implantation remains for 6-7 days after ovulation, and is maintained by an increasing concentration of progesterone.

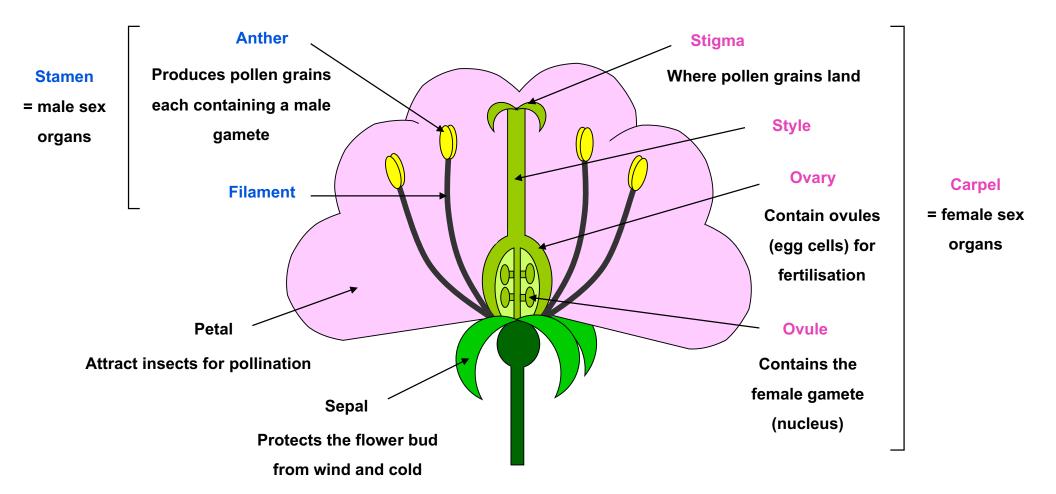
SEXUALLY TRANSMITTED INFECTIONS (STIs)


- The human immunodeficiency
 virus (HIV) destroys lymphocytes
 in the body, meaning that less
 antibodies can be produced.
- AIDS (acquired immunodeficiency syndrome) is the late stage of HIV infection, diagnosed when a person's T cell count falls below a specific threshold, or if they develop opportunistic infections.

FERTILITY METHODS

IN-VITRO FERTILISATION (IVF)

"In-vitro" = outside a living organism.
Egg cells are removed from a
woman's ovaries and fertilised with
sperm in a laboratory.



ARTIFICIAL INSEMINATION (AI)

Sperm cells are directly injected into a woman's uterus (fertilisation happens inside the body).

16 REPRODUCTION IN PLANTS

FLOWER STRUCTURE

- The primary function of a **flower** is **reproduction** to produce sex cells and ensure that fertilisation occurs.
- Most flowers have both male and female sexual organs on the same individual (can self-pollinate).

Plants can reproduce both sexually and asexually

Sexual reproduction

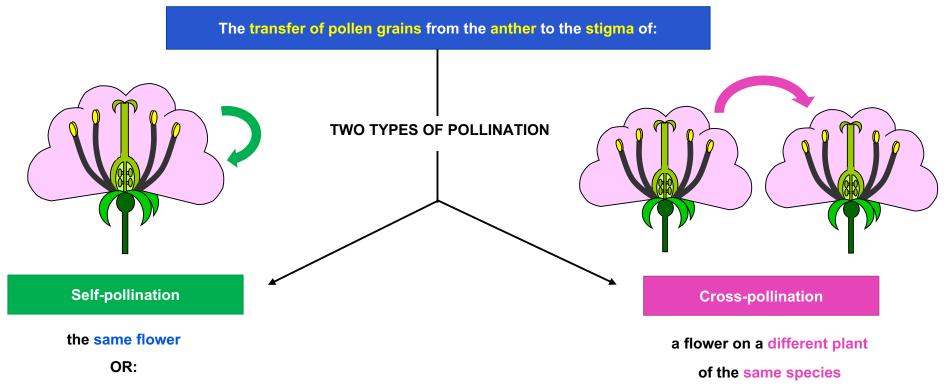
A process resulting in the production of genetically different offspring, which involves the fusion of the nuclei of two gametes to form a zygote

Self-pollination

Cross-pollination

Asexual reproduction

A process resulting in the production of genetically identical offspring from one parent

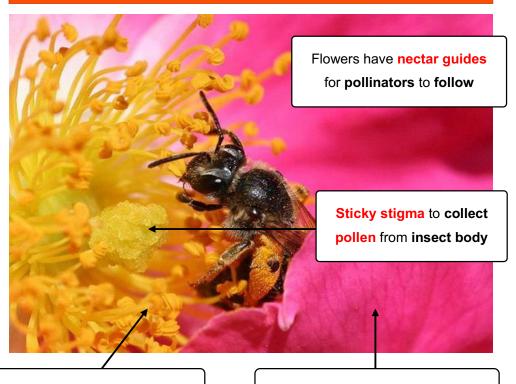

E.g. potato stem tubers, strawberry runners

Offspring grow by mitosis – gametes are not involved

Pollination and fertilisation do not occur

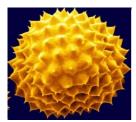
	Advantages	Disadvantages
SEXUAL REPRODUCTION	 More genetic variation More able to adapt to changes in the environment Can disperse seeds to colonise new areas if the environment is unfavourable 	 May need two plants – relies on pollinator Slow Pollen / seeds are wasted (So) energy is lost
ASEXUAL REPRODUCTION	 Only one parent needed – no pollinators Fast No sex cells are needed – saves energy Advantageous adaptations of parent plant will be passed on to all offspring 	 No genetic variation Less able to adapt to changes May all be killed by the same infectious disease

SELF VS. CROSS POLLINATION

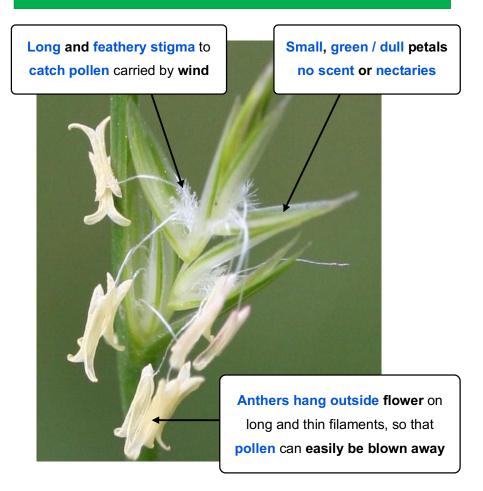

a different flower on the same plant

- Self-pollination increases the chances of pollination and fertilisation.
- This is useful if a plant is geographically isolated from others.
- However, there are still many disadvantages due to the limited genetic variation.

	SELF-POLLINATION	CROSS-POLLINATION
Genetic variation	Lower	Higher
Capacity to respond to environmental changes	Lower	Higher
Needs a pollinating agent (insects / wind)	No	Yes


INSECT VS. WIND POLLINATED FLOWERS & THEIR POLLEN GRAINS

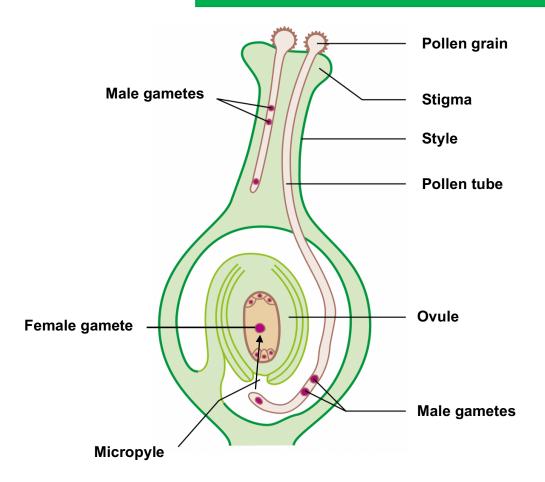
Insect-pollinated flower


Anthers firmly positioned to transfer pollen when insects brush against them

Large, brightly coloured petals
Usually are scented and produce
nectar to attract insects

- Larger
- Produced in smaller numbers
- Sticky and spiky for attachment to hairs on the insect's body

Wind-pollinated flower



- Smaller
- Produced in larger numbers
- Have 'wings'
- Smooth and light easily carried by wind

POLLINATION, FERTILISATION TO SEED & FRUIT FORMATION

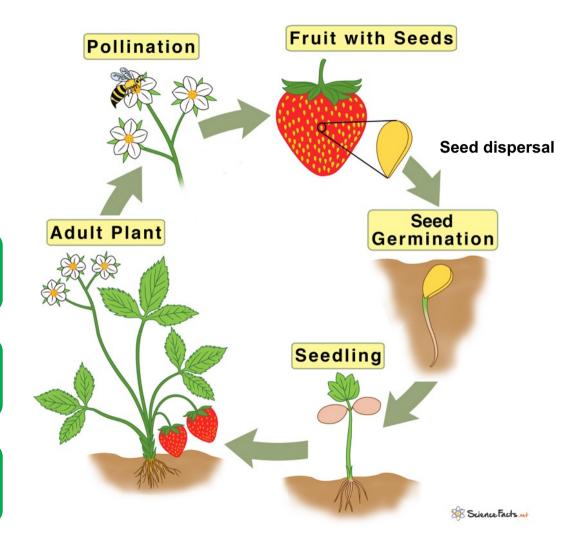
Fertilisation occurs when the nuclei of a pollen grain and an ovule join

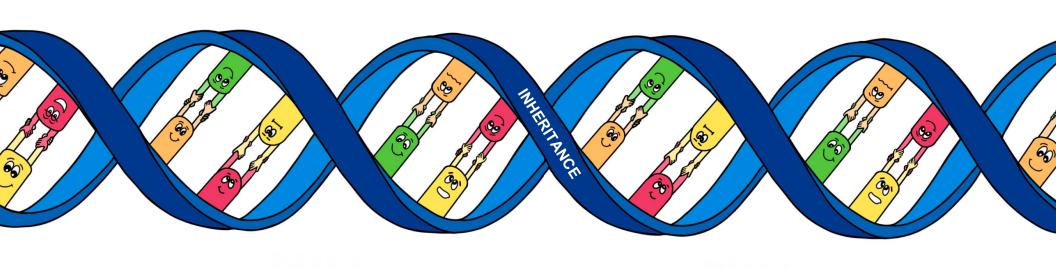
- Pollen grain lands on stigma = pollination
- Pollen tube forms and grows down through the style to the ovary
- Pollen tube enters the ovary through its micropyle
- Pollen grain nucleus is released and fuses with
 an ovule nucleus = fertilisation
- Fertilised ovule develops into an embryo plant
- Water leaves = becomes dehydrated
- The ovule develops into a seed
- The ovary develops into a fruit
- The seed dehydrates and becomes dormant so metabolic reactions stop.
- This saves energy if environmental conditions are not favourable for growth.
- It is then dispersed by some 'agent' (e.g. wind, water or ingested by animals) and carried away from the parent plant.
- Under the correct conditions the seed germinates to produce a young plant.

SEED GERMINATION

LIFE CYCLE OF A FLOWERING PLANT

Water

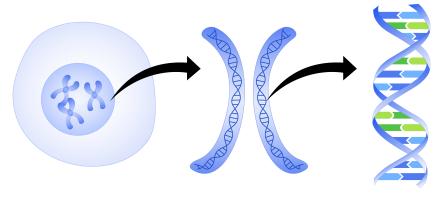

To activate enzymes in the seed for metabolism


Oxygen

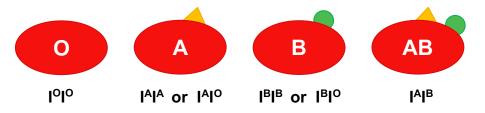
For respiration so that energy can be released

Warmth

To allow enzymes to work close to optimum



VOCABULARY


WORD	DEFINITION
Inheritance	The transmission of genetic information from generation to generation
Chromosome	Made of a long molecule of DNA , which contains genetic information in the form of genes
Gene	A length of DNA that codes for a protein
Allele	An alternative form of a gene
Dominant allele	An allele that is expressed if it is present in the genotype
Recessive allele	An allele that is only expressed if there is no dominant allele of the gene present in the genotype
Homozygous	Having two identical alleles of a gene, e.g. TT / tt Two identical homozygous individuals that breed together will be pure-breeding
Heterozygous	Having two different alleles of a gene , e.g. Tt A heterozygous individual will not be pure-breeding
Genotype	The alleles that an organism carries for a gene (2 for each)
Phenotype	The observable features of an organism due to its genotype
Co-dominance	When two alleles have equal dominance , so both are expressed if an individual is heterozygous , resulting in a new phenotype.
F1 generation	Offspring from the first mating
F2 generation	Offspring form the second mating

$NUCLEUS \rightarrow CHROMOSOME \rightarrow DNA$

THE HUMAN ABO BLOOD GROUP SYSTEM

- This is an example of both co-dominance and multiple alleles.
- The gene has 3 alleles I^A, I^B and I^O, but each person can only carry 2.
- I^A and I^B are codominant, while I^O is recessive to both.

- Alleles I^A and I^B code for different enzymes that help to make A and B antigens present on the surface of red blood cells.
- I^o does not code for these enzymes, so neither A or B antigens will be made if a person has the genotype I^oI^o.

	ΙB	10
IA	I ^A I ^B	IAIO
lo	IBIO	lolo

Parents with genotypes I^AI^O and I^BI^O are able to have children of all four blood groups at equal chance (25%)

MONOHYBRID CROSSES

These are crosses for traits controlled by one gene.

Cystic fibrosis is a lung disease caused by the recessive allele f.

The following crosses show the possible combinations of parental genotypes and the corresponding genotypes and phenotypes of their offspring.

	f	f
F	Ff	Ff
F	Ff	Ff

FF X ff

Homozygous dominant Homozygous recessive

Recessive phenotype (cystic fibrosis) = 0%

Dominant phenotype (healthy) = 100%

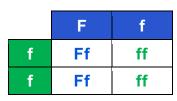
	F	f
F	FF	FF
F	Ff	Ff

FF X Ff

Homozygous dominant Heterozygous

Recessive phenotype (cystic fibrosis) = 0%

Dominant phenotype (healthy) = 100%


	F	f
F	FF	Ff
f	Ff	ff

Ff X Ff

Heterozygous

Recessive phenotype (cystic fibrosis) = 25%

Dominant phenotype (healthy) = 75%

Heterozygous Homozygous recessive
Recessive phenotype (cystic fibrosis) = 50%
Dominant phenotype (healthy) = 50%

ff

Two **identically homozygous** individuals that breed together are described as **pure breeding**. All offspring will have the same genotype and phenotype of the trait.

Ff

TEST CROSSES

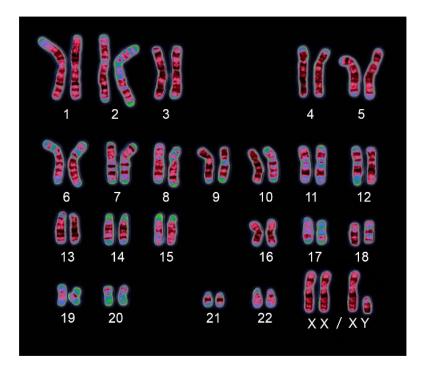
- Used to determine the genotype of an individual with a dominant phenotype.
- The individual is **mated** with a partner with the **recessive phenotype**.
- The parent's genotype is determined by observing offspring phenotypes.

Homozygous dominant parent			Heterozygous parent				
	R	R			R	r	
r	Rr	Rr		r	Rr	rr	
r	Rr	Rr		r	Rr	rr	
All offspring will have the dominant phenotype		ph		ominant and	d recessive en in offspri	ing	

SEX-LINKED CHARACTERISTICS

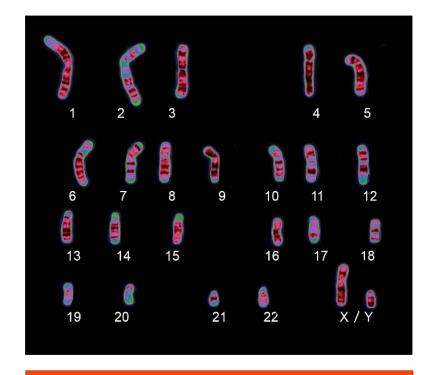
When the gene responsible is located on a sex chromosome, X or Y.

This makes the characteristic more common in one sex than the other.


- Examples in humans are haemophilia and red-green colour blindness.
- Both are caused by recessive alleles located on the X-chromosome.
- In recessive X-linked genetic diseases, **more males** will be affected than females:

Males have one X-chromosome	Females have two X-chromosomes
Cannot be carriers / heterozygous	Can be carriers / heterozygous
Cannot also carry the	Can also carry the
dominant allele to mask the effect	dominant allele to mask the effect
of the recessive allele	of the recessive allele

Human diploid number (2n) = 46

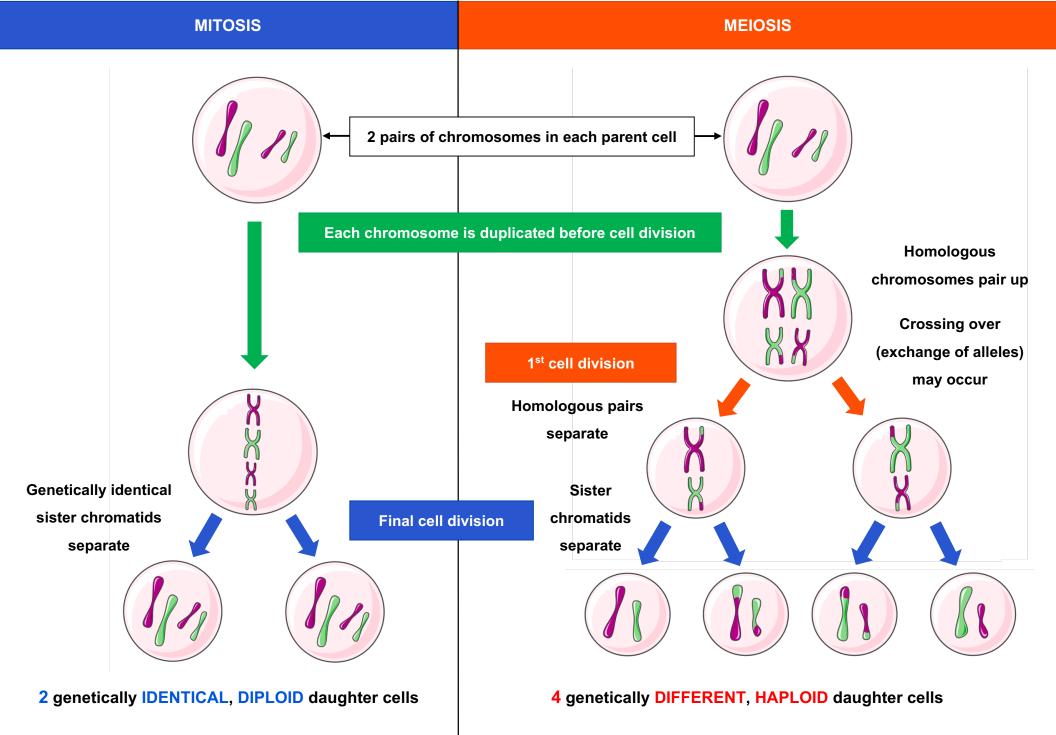

Body cells

Two sets of chromosomes in pairs

One chromosome pair of each kind,

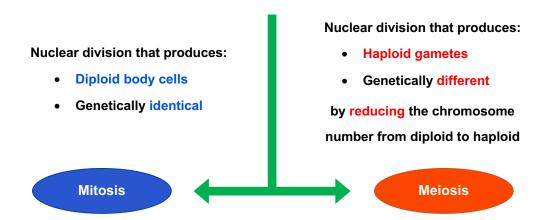
one from mum and one from dad

Human haploid number (n) = 23



Sex cells

One set of unpaired chromosomes


One chromosome of each kind,
either from mum or from dad

- In diploid cells, the two chromosomes of each pair are called homologous chromosomes.
- They are about the same length and contain genes responsible for the same characteristics in the same positions.
- However, the genes can be in different forms (alleles), which can be combined in various ways to give different phenotypes.

MITOSIS VS MEIOSIS

Chromosomes are duplicated before cell division

	MITOSIS	MEIOSIS
Roles	 Growth Repairs damaged tissues Replacement of cells Maintains the diploid chromosome number Asexual reproduction 	 Increases genetic variation Halves the chromosome number so that the diploid number can be restored in the zygote by fertilisation Sexual reproduction
Where it occurs	All body organs	Testes and ovaries
Number of cells produced from the original cell	2	4
Number of divisions	1	2
What it does to the chromosome number	Maintains it	Halves it

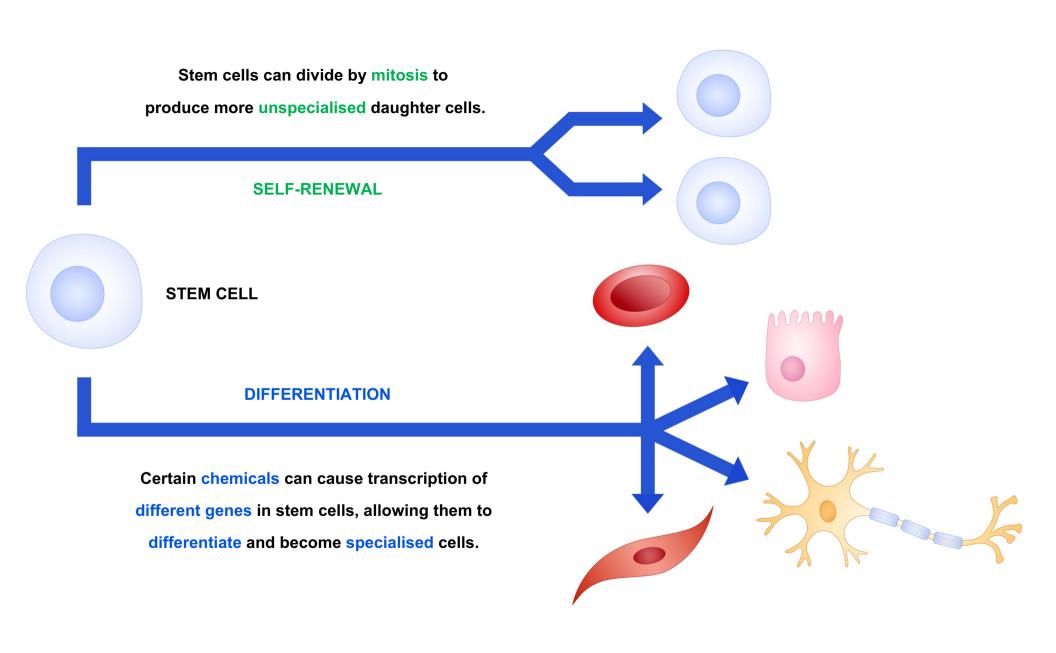
FERTILISATION Haploid sperm cell Diploid 2490te 210

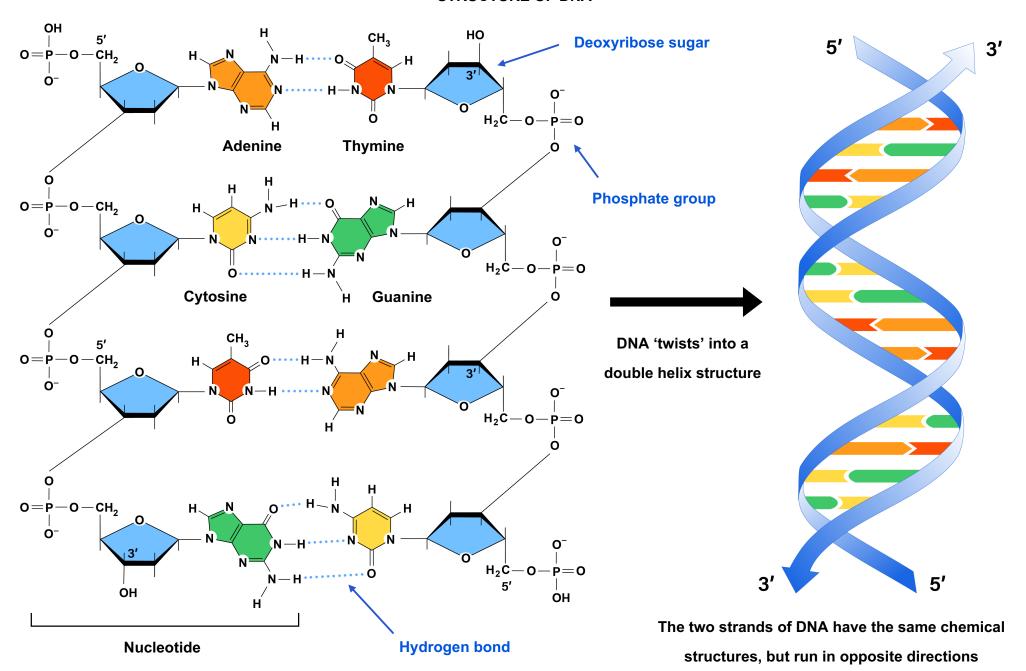
HOW MEIOSIS CONTRIBUTES TO GENETIC VARIATION

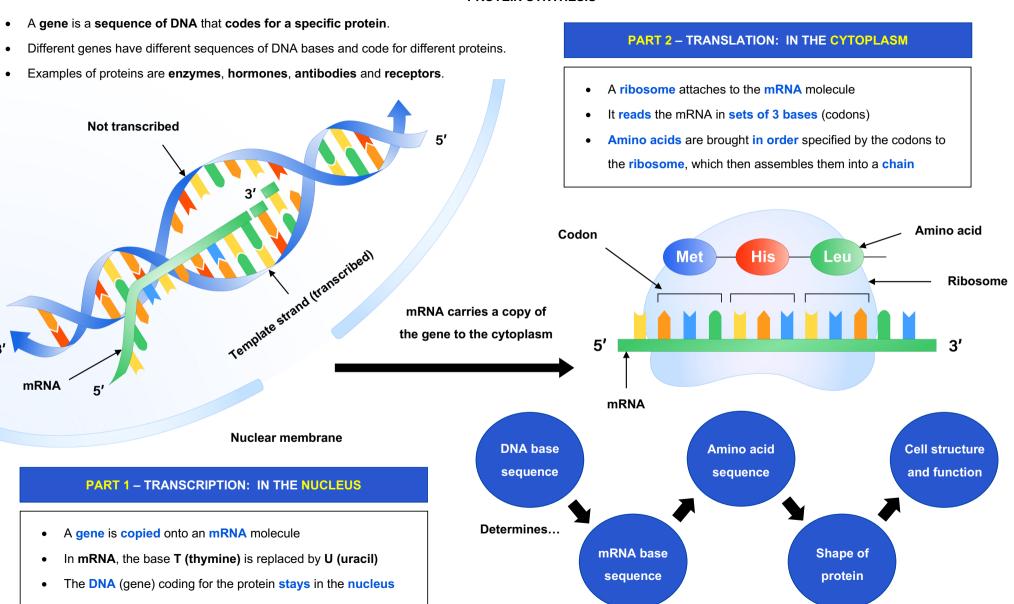
Homologous chromosomes exchange alleles during crossing over = new combinations of alleles

During meiosis

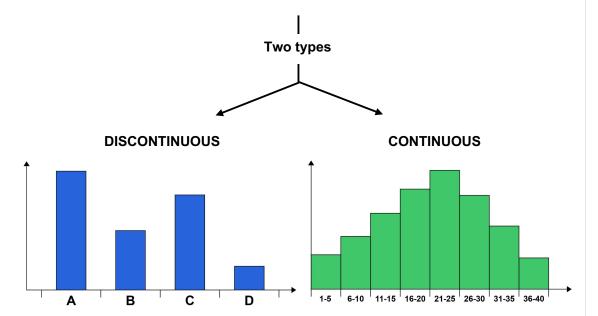
Homologous chromosomes align randomly


= many different possible combinations of
maternal and paternal chromosomes in gametes


Haploid gametes from two parents fuse randomly

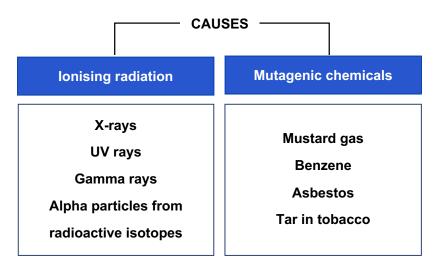

Zygotes (offspring) are genetically different

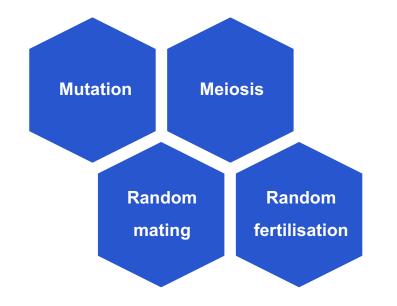
STRUCTURE OF DNA


PROTEIN SYNTHESIS

18 VARIATION AND SELECTION

VARIATION


Variation is differences between individuals of the same species


Discontinuous variation	Continuous variation
Caused by genes only	Caused by both genes AND the environment
Limited number of phenotypes	Range of phenotypes between
with no intermediates	two extremes
Tend to be qualitative	Tend to be quantitative
(cannot be measured with numbers)	(can be measured with numbers)
ABO blood groups	Body length
Seed shape and colour in peas	Body mass
Draw as a bar chart	Draw as a frequency histogram

GENE MUTATION

- This is a random change in the base sequence of DNA.
- Mutation is the way in which **new alleles** are formed.

SOURCES OF GENETIC VARIATION IN POPULATIONS

NATURAL SELECTION

Mutation causes genetic variation within a population. Some genes produce more advantageous phenotypes.

Overproduction of offspring leads to struggle for survival, including competition for resources.

Individuals with a selective advantage are more likely to survive, reproduce and pass on their alleles to their offspring.

Over many generations, the frequency of this allele increases in the population.

ADAPTIVE FEATURE

An inherited feature that helps an organism to survive and reproduce in its environment.

ADAPTATION

The process, resulting from natural selection, by which populations become more suited to their environment over many generations.

ARTIFICIAL SELECTION

Parent individuals with desirable features are selected by humans

These individuals are crossed to produce the next generation

Offspring showing improvement in the desirable feature are selected and crossed together

Selecting and breeding is repeated over many generations

Natural selection	Artificial selection
Caused by environmental pressures Selected features are advantageous adaptations to the environment	Features are selected by human choice
Maintains genetic variation	Reduces genetic variation
Increases chances of survival	Usually reduces chances of survival
Speciation is slower	Speciation is faster
Mating is random	Selected organisms are mated
Inbreeding is less common	Inbreeding is more common
Involves competition for survival	Competition is not involved

ADAPTIVE FEATURES OF:

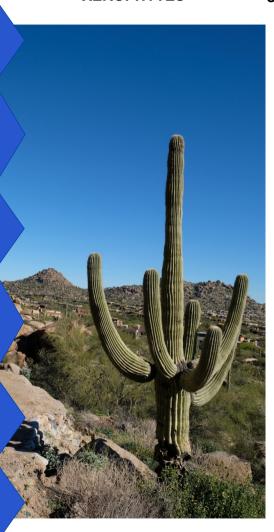
XEROPHYTES

HYDROPHYTES

01657222 @ Remi Masson / naturepl.com

Leaves reduced to spines
= reduced surface area

Thick, waxy cuticle on leaf surface


= reduces transpiration

Stomatal hair traps a layer of moisture

Stomata sunken in pits
& close during the day
= reduces water loss

Swollen stems for water storage & extensive roots for absorption

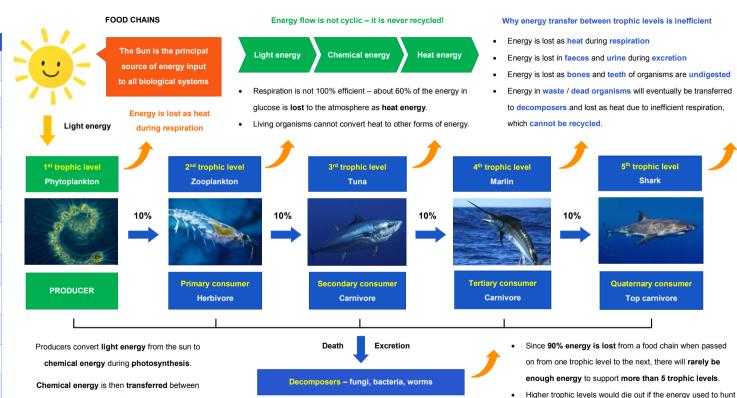
Shiny surfaces to reflect light and heat

Leaves and stem have little or no cuticle as no need to conserve water

Stomata on upper surface of floating leaves for gas exchange

Large air spaces in the spongy mesophyll has two jobs:

- Buoyancy (floating) keeps plant close to light
- 2. Stores O₂ and CO₂

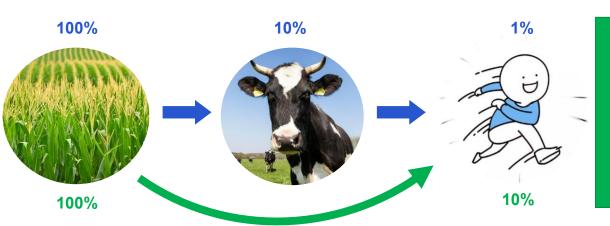

Rely on water for support = produce little or no xylem (saves energy)

Roots are absent / poorly developed with no root hairs, as no need to absorb water or minerals

19 ORGANISMS AND THEIR ENVIRONMENT

VOCABULARY

Word	Definition
Food chain	Shows the transfer of energy from one organism to the next, beginning with a producer .
Food web	A network of interconnected food chains.
Producer	An organism that makes its own organic nutrients , using energy from sunlight , by photosynthesis .
Consumer	An organism that gets its energy by feeding on other organisms .
Trophic level	The position of an organism in a food chain , food web , pyramid of numbers or pyramid of biomass .
Herbivore	An animal that gets its energy by eating plants .
Carnivore	An animal that gets its energy by eating other animals .
Omnivore	An animal that gets its energy by eating plants and other animals .
Decomposer	An organism that gets its energy from dead or waste organic material.
Population	A group of organisms of one species, living in the same area, at the same time.
Community	All of the populations of different species in an ecosystem.
Ecosystem	A unit containing the community of organisms and their environment , interacting together.
Biomass	The total mass of living organisms in a given area at a given time .



prey exceeds the energy available from the food eaten.

successive organisms in a food chain by ingestion.

SUPPLYING LIVESTOCK VS. SUPPLYING CROPS AS HUMAN FOOD

Feeding crops to livestock that
are then used for food
Energy is lost from livestock
Only 1% of the initial
energy in crops will
be passed on to humans

using crops directly
as human food
Only 2 trophic levels
in this food chain =
more energy efficient
(10% energy received)

Pyramid of NUMBERS

Shows the **number** of organisms at each **trophic level** of a **food chain**

PYRAMID OF NUMBERS VS. PYRAMID OF BIOMASS

Pyramid of BIOMASS

Shows the **mass** of organisms (g/m² or kg/m²) at each **trophic level** of a **food chain**

Buzzard

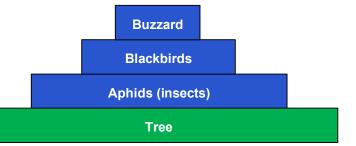
Blackbirds

Aphids (insects)

Tree

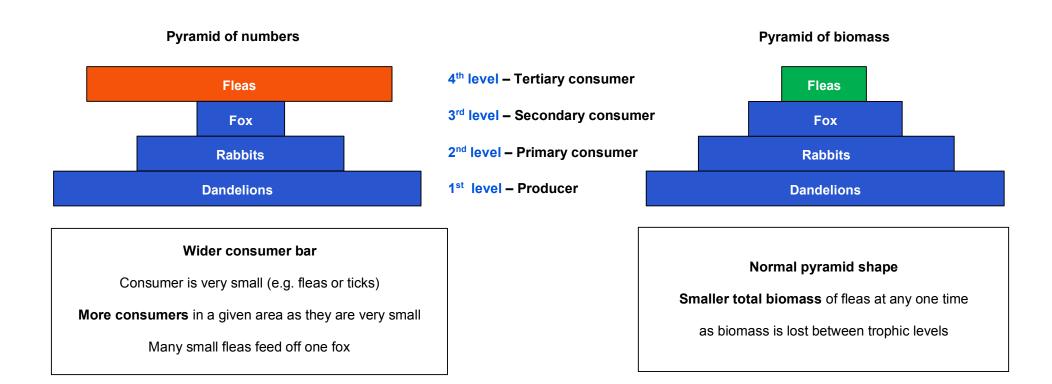
Shorter producer bar

Producer is large (e.g. tree or bush)


Smaller number of trees in a given area one tree is large enough to feed many small aphids

4th level – Tertiary consumer

3rd level – Secondary consumer

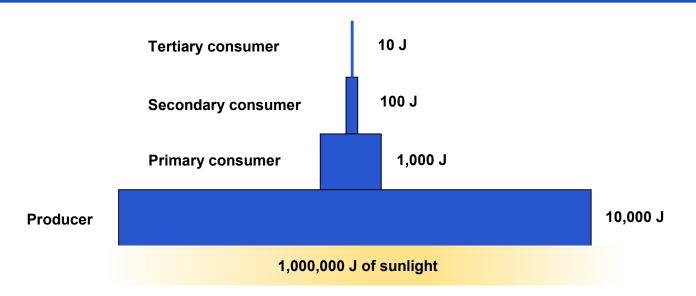

2nd level – Primary consumer

1st level - Producer

Normal pyramid shape

Greater total biomass of trees at any one time as biomass is always lost between trophic levels

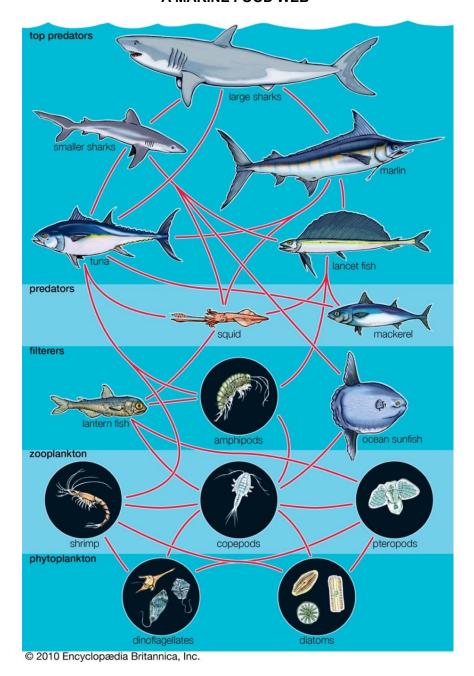
A pyramid of biomass can occasionally be inverted


Zooplankton

Phytoplankton

- A pyramid of biomass shows only a single 'snapshot' in time, so cannot show how fast the biomass at a trophic level is renewed.
- Phytoplankton have a much **shorter lifespan** than zooplankton.
- They reproduce rapidly but are also eaten very quickly by zooplankton.
- The biomass of phytoplankton at any one time is small (shown by the pyramid),
 however the total amount of biomass produced over a year would be huge.

PYRAMID OF ENERGY


This shows the amount of energy present (e.g. KJ m⁻² year⁻¹) at each trophic level of a food chain. Each level is about 1/10 the width of the preceding level as energy transfer is only 10% efficient.

Most wavelengths of sunlight cannot be absorbed by chlorophyll – only about 1% of the energy from the sun is absorbed and used in photosynthesis.

Advantages of a pyramid of biomass over a pyramid of numbers	Advantages of a pyramid of energy over both
Pyramid is not usually inverted	Pyramid is never inverted
Takes into account the size of organisms , while a pyramid of numbers does not	Takes into account the rate of energy production over a period of time Between species with very different life spans, productivity is directly comparable but biomass is not
Biomass is a more accurate indication of the amount of energy available at each trophic level than the number of organisms	Most accurate – shows actual quantity and efficiency of energy transfer (Organisms with the same dry mass may contain different amounts of energy)

A MARINE FOOD WEB

Starting from a producer (not from the sun if included):

1 arrow = primary consumer

2 arrows = secondary consumer

3 arrows = tertiary consumer

4 arrows = quaternary consumer

Some organisms can act as more than one type of consumer

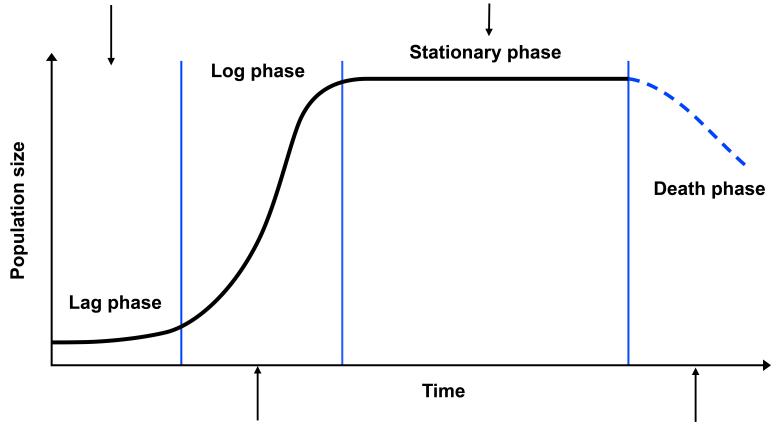
in the same food web.

 Humans can impact food chains and food webs by overharvesting food species or introducing harmful foreign species.

FACTORS AFFECTING RATE OF POPULATION GROWTH

SIGMOID POPULATION GROWTH CURVE

Reproduction rate > death rate


Few reproductive individuals present

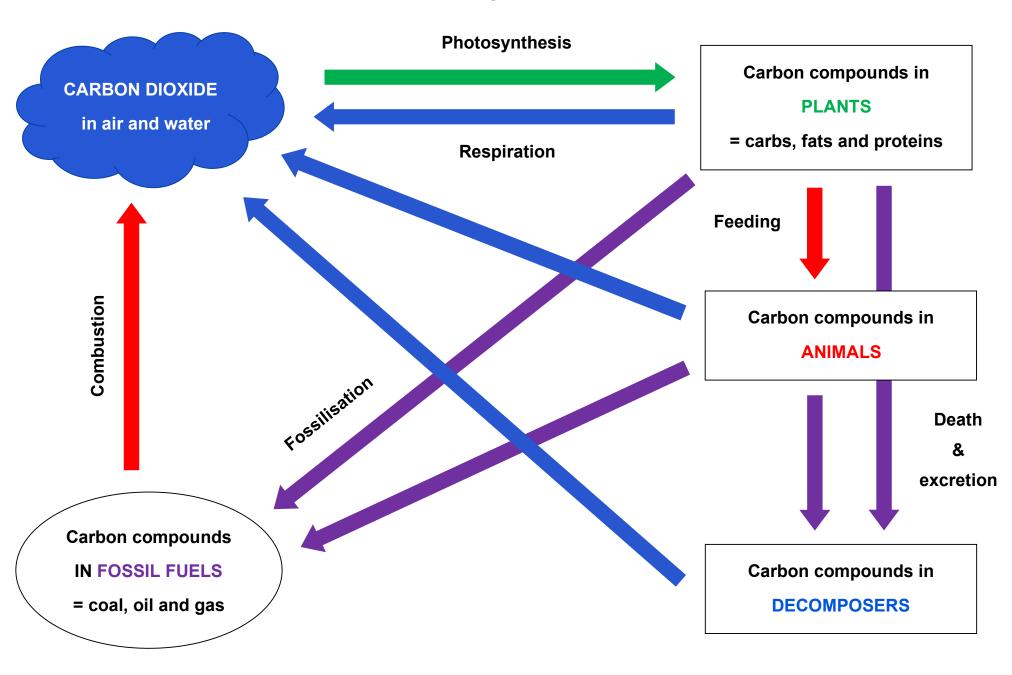
Doubling in number has little effect as the

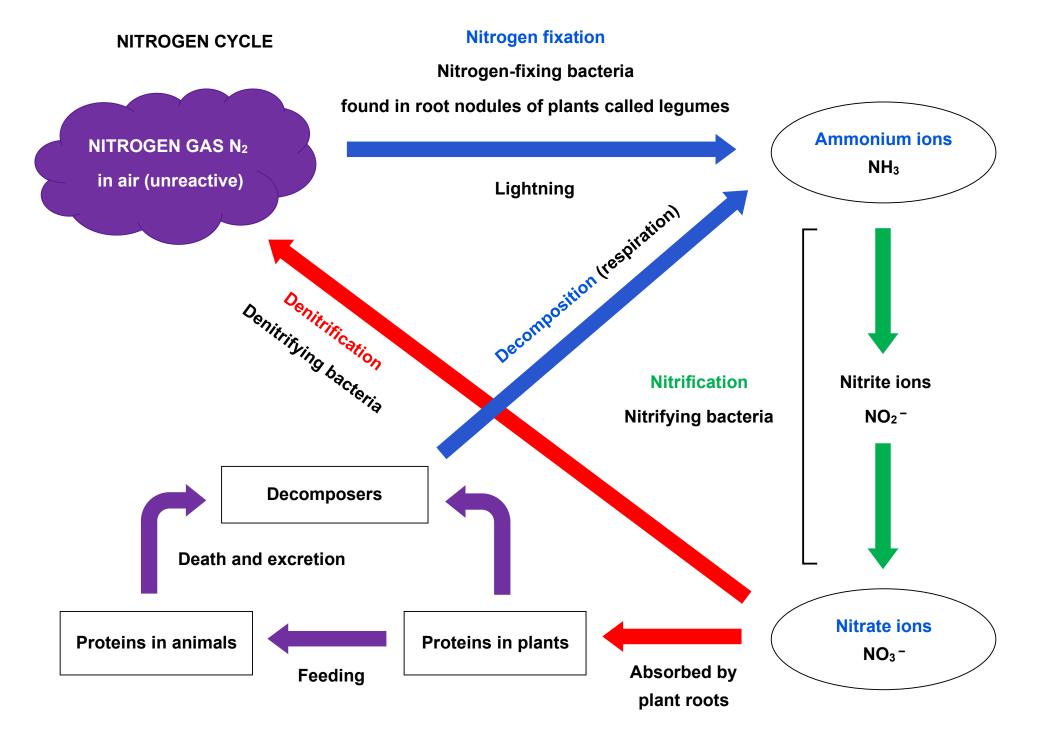
total population is very small

Reproduction rate = death rate

Death rate increases and population growth **slows down**due to **limiting factors** e.g. food shortage, competition,
carrying capacity of environment, disease, build up of waste

Reproduction rate > death rate


Population increases exponentially – doubles each time


No limiting factors to population growth

Death rate > reproduction rate

This occurs when microorganisms are cultured in closed systems, due to the accumulation of **waste products**.

CARBON CYCLE

20 HUMAN INFLUENCES ON ECOSYSTEMS

HOW HUMANS HAVE INCREASED FOOD PRODUCTION

Chemical fertilisers

to improve yield

Herbicides

to reduce competition with weeds

Insecticides

to improve quality and yield

Agricultural machinery

to use larger areas of land and improve efficiency

Selective breeding

to improve production by crop plants and livestock

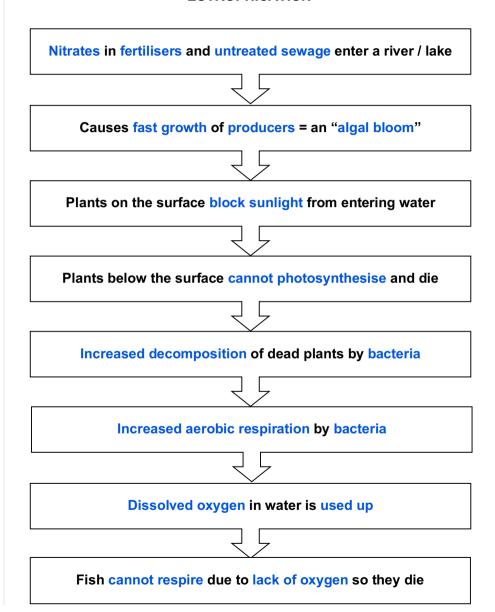
LARGE-SCALE MONOCULTURES OF CROP PLANTS

- 1 One infectious **disease** can **kill the entire crop** little genetic variation
- **Deforestation** causes increased **soil erosion** and **desertification**
- 3 Causes **depletion** of specific **nutrients** in the soil
- 4 Loss of variety in habitats and biodiversity
- 5 Disrupts food chains
- 6 Excess fertilisers can cause eutrophication in water sources
- 7 Overuse of herbicides and insecticides can cause pollution
- 8 Efficient food production so less land needed

INTENSIVE LIVESTOCK PRODUCTION

- 1 Diseases spread easily
- 2 Feed is expensive
- 3 Animal welfare concerns
- 4 Chemicals used to control disease (e.g. antibiotics) can cause pollution
- 5 Waste feed can cause eutrophication
- 6 More energy efficient to feed humans on crops

Biodiversity is the number of different species that live in an area

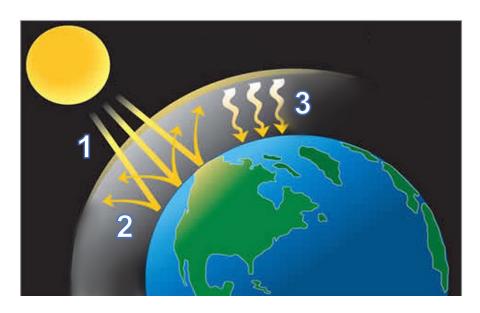

REASONS FOR HABITAT DESTRUCTION

- Increased area for housing, crop plant and livestock production
- Extraction of natural resources
- Freshwater and marine pollution

NEGATIVE IMPACTS OF DEFORESTATION

- 1 Loss of habitats and biodiversity
- 2 Disrupts food chains
- 3 Increased risk of flooding as there are no trees to absorb water
- 4 Soil erosion increases as plant roots die and cannot bind to the soil
- 5 Causes silting of rivers
- 6 Soil fertility is reduced as nutrients are removed
- 7 Increased rate of evaporation so less soil water, causing desertification
- 8 Less photosynthesis so increased atmospheric CO₂ concentration, accelerating the greenhouse effect
- **9** Decreased transpiration can cause reduced rainfall in distant regions

EUTROPHICATION

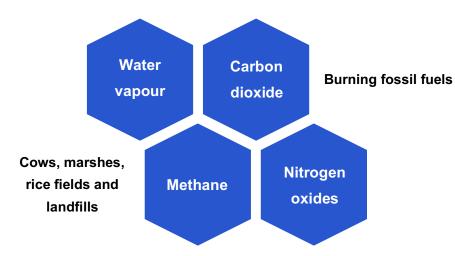


NEGATIVE EFFECTS OF NON-BIODEGRADABLE PLASTICS

- 1 Visual pollution
- 2 Habitat destruction
- 3 Can block digestive or respiratory systems of animals
- 4 Marine animals can get tangled in plastic difficult to move and find prey
- 5 Release chemicals, toxins and fumes if they are burned
- 6 Plastic accumulates in organisms as it is passed up food chains
- 7 Do not break down remain in the ecosystem for a long time
- 8 Block sunlight so producers cannot photosynthesise
- 9 (So) less energy enters food chains
- 10 Block roots
- 11 Block drainage channels causing waterlogging of soils and flooding

THE GREENHOUSE EFFECT

Sunlight passes through the atmosphere to reach Earth's surface
 Sunlight = short-wave radiation


2. Earth's surface re-emits this as long-wave radiation = heat

3. Greenhouse gases absorb long-wave radiation (heat)

They **reflect** this heat **back to Earth** = temperature increases

The Greenhouse Effect is a natural process that has been artificially speeded up by humans

FOUR MAIN GREENHOUSE GASES

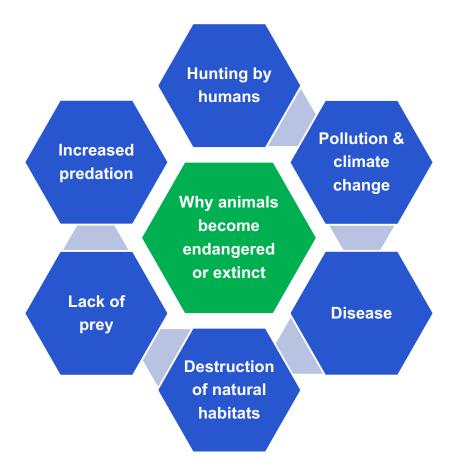
SUSTAINABLE RESOURCE

One which is produced as rapidly as it is removed from the environment so that it does not run out

MAINTAINING FOREST RESOURCES

- 1 Replanting trees (afforestation)
- 2 Quotas for cutting down trees
- 3 Education
- 4 Set up **protected areas** e.g. national parks
- 5 Selectively cut trees so that growth of other trees is unaffected

Why are replanted forests often less useful for conservation?


- A replanted forest is usually a monoculture
- Plants lack genetic variation more susceptible to diseases
- Reduces variety of local habitats and biodiversity
- Invasive foreign species may be introduced
- Replanted trees take a long time to reach maturity.

MAINTAINING WILD FISH STOCKS

- 1 Set **quotas** on the number of fish caught
- 2 Fines for overfishing
- 3 Captive breeding and fish farms
- Restock fish by returning more fish than is removed
- 5 Ban fishing during breeding seasons
- 6 Set up no-catch zones
- **Restrict net sizes** and **return young fish** if caught
- **8** Education
- 9 Reduce pollution of rivers / lakes / seas

RISKS TO A SPECIES IF THE POPULATION SIZE DROPS

- 1 Less chances of reproduction
- 2 Higher risk of extinction
- 3 Less genetic variation as the number of different alleles in the population decreases (inbreeding is more likely = increased homozygosity)
- 4 (So) **less likely** to **adapt to change** in the **environment**, e.g. the whole population could be susceptible to a new infectious disease
- 5 Higher risk of genetic diseases

WAYS TO CONSERVE ENDANGERED SPECIES

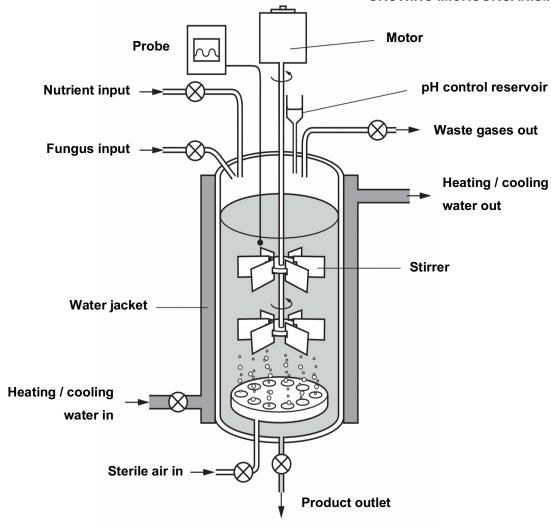
- 1 Monitor number of individuals to detect changes in the population
- 2 Protect habitats
- 3 Remove foreign species to reduce competition
- 4 Captive breeding programmes
- 5 Release the animals that are bred back into the wild
- 6 Legislations to reduce pollution
- 7 Ban hunting
- 8 Seed banks to conserve genetic variation in plant species
- 9 Raise awareness through education

BENEFITS OF CONSERVATION PROGRAMMES

- 1 Protects vulnerable environments and prevents habitat loss
- 2 Reduces extinction of species
- 3 Maintains recycling of nutrients
- 4 Maintains / increases genetic variation and biodiversity
- Provides resources such as food, drugs, fuel and genes
- 6 Prevents disruption of food chains
- 7 Prevents flooding caused by deforestation
- 8 Provides **shelter** and **breeding** grounds
- 9 Provides aesthetically beautiful areas that can attract tourists

21 BIOTECHNOLOGY AND GENETIC MODIFICATION

USES OF BIOTECHNOLOGY IN INDUSTRIAL PROCESSES


Using anaerobic respiration in yeast for biofuel, brewing and bread making

Using digestive enzymes in biological washing powders

Using lactase enzyme to produce lactose-free milk

Using pectinase enzyme in fruit juice production

GROWING MICROORGANISMS IN A FERMENTER

- Fermenters can be used for large-scale production of useful products by growing large populations of bacteria and fungi, including:
- Insulin made by genetically modified bacteria with human insulin genes
- Penicillin made by the fungus Penicillium
- Mycoprotein made by the fungus Fusarium

AIR SUPPLY

• Provides oxygen for aerobic respiration of the microbe

NUTRIENT SUPPLY

- Glucose / carbohydrates as an energy source
- Amino acids for protein synthesis

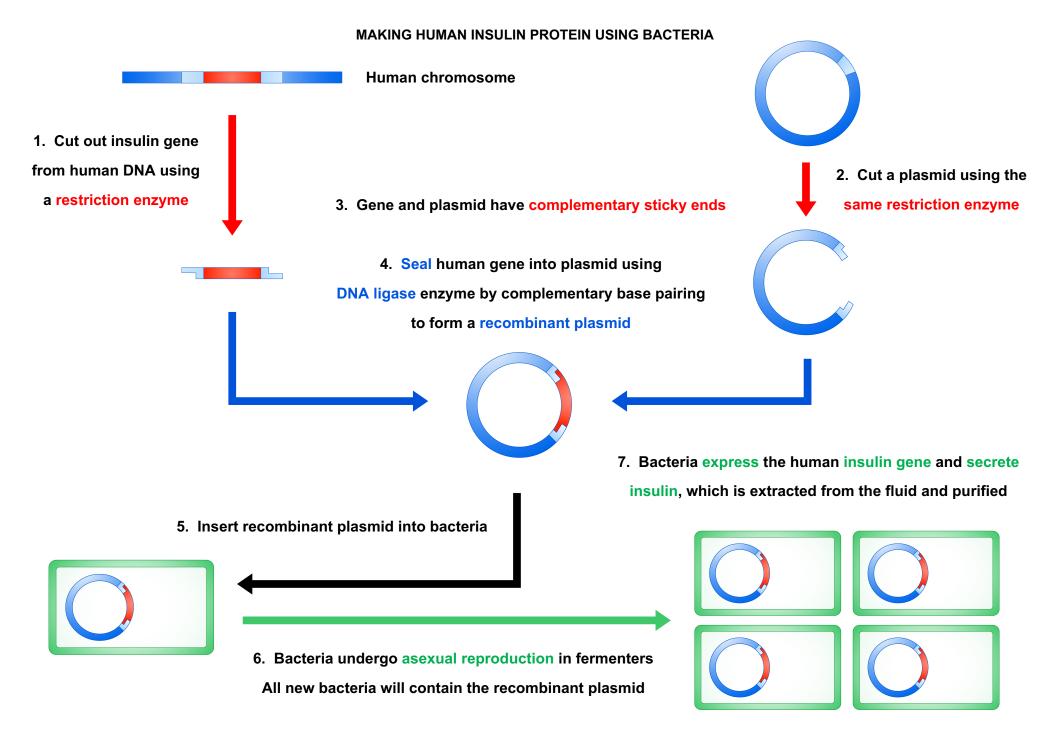
GAS OUTLET

 Removes waste CO₂ produced by respiration, as CO₂ will become toxic to the microbe if it builds up

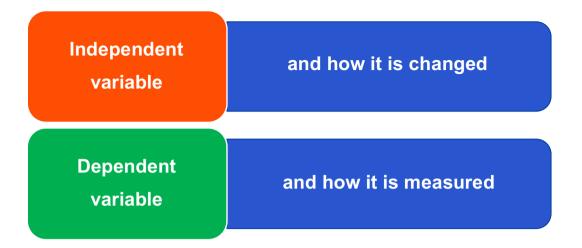
STIRRER

- Keeps the microbe suspended
- (So) ensures that the microbe is always in contact with nutrients
- Maintains an even temperature throughout the mixture

WATER JACKET


- Reduces heat energy released from respiration by the microbe to prevent the temperature from increasing
- Maintains an optimum temperature for enzymes

TEMPERATURE / PH PROBES

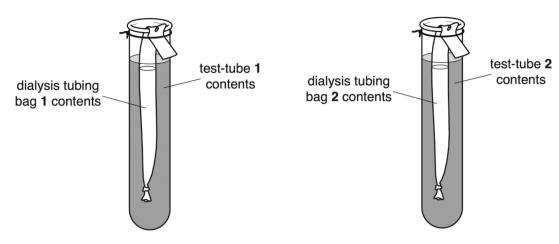

• Monitor the pH and temperature of the mixture

ACID OR ALKALI

- Added to maintain an optimum pH for enzymes
- Prevents enzymes from denaturing
- Ensures maximum rate of reaction = maximum yield

First things to identify from the given experiment procedure:

Drawing a table for data


Example 1: recording numbers and mean of bubbles produced by three potato pieces

Diago of notate	Number of bubbles in 3 minutes		
Piece of potato	Slice 1	Slice 2	Mean
Α	5	3	4
В	18	11	14.5
С	12	10	11

Example 2: recording temperature change with time of water in two beakers

Time / minutes	Temperature / °C	
Time / minutes	Beaker A	Beaker B
0	83	83
1	81	76
2	78	72
3	76	68.5
4	74	64

Example 3: recording colour observations from food tests

	Observations			
Food test	Dialysis tubing bag		Test-tube	
	1	2	1	2
Starch	Brown	Blue-black	Brown	Brown
Reducing sugar	Brick-red	Blue	Orange	Blue

Giving a conclusion - e.g., "describe the effect of ... on ..."

- There will usually be a correlation between the two variables, so we can describe the trend
 i.e. as the greater the independent variable, the greater / smaller the dependent variable.
- Use **comparative data** to support (if the question has more than 1 mark).
- Pay attention to whether the question needs you to "explain" the reason.

Content that may be tested in experiments

ENZYME-CATALYSED REACTIONS

Factors affecting enzyme activity:

- Temperature
- pH
- Concentration of enzyme / substrate
- Surface area larger SA = more
 enzyme in contact with substrate

DIFFUSION AND OSMOSIS

Factors affecting rate:

- Temperature
- Concentration gradient
- Surface area

Test	Brief method	Colour change if present
Starch	Add iodine solution	Red/brown → black
Reducing sugar (glucose)	Heat with benedict's solution	Blue → brick red
Protein	Add biuret solution	Blue → purple
Fat (lipid)	Add ethanol Shake well Add an equal volume of water	White emulsion
Vitamin C	Add DCPIP	Blue → colourless

Factors affecting rate:

- Temperature
- pH

Could be measured by:

- A respirometer
- CO₂ production

Factors affecting rate:

- Temperature
- pH
- Light intensity
- CO₂ concentration
- Leaf surface area

Could be measured by:

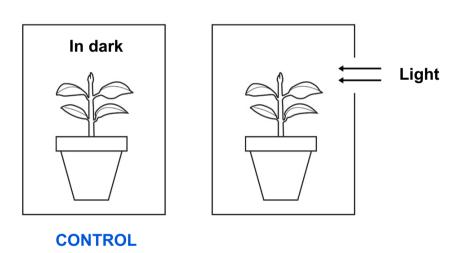
- O₂ production
- Carbohydrate production
- Increase in mass

Factors affecting rate:

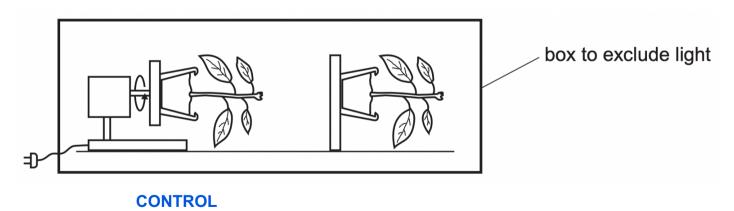
- Temperature
- Light intensity
- Humidity
- Wind speed
- Leaf surface area

Could be measured by:

- A potometer
- A stem & a stain
- Decrease in mass (balance and stopwatch)



Could be measured by:


- Count number of germinated seeds after a set time
- Changes in dry mass (decreases then increases)

PLANT TROPIC RESPONSES

PHOTOTROPISM

GRAVITROPISM

- The plant used as the **control** is **constantly rotated** on a **clinostat**.
- This negates the effect of gravity on one side of the plant only, allowing comparison of response with the other plant.

HEART AND BREATHING RATES

EXERCISE

Varying intensity:

Same exercise type

Different durations

MEASURING BREATHING RATE

- Measure increase in chest circumference
- Count the number of breaths over 1 min

Consider the following for controlled variables:

- Gender
- Age
- Level of fitness
- Environmental conditions
- Resting time between exercises

Varying type:

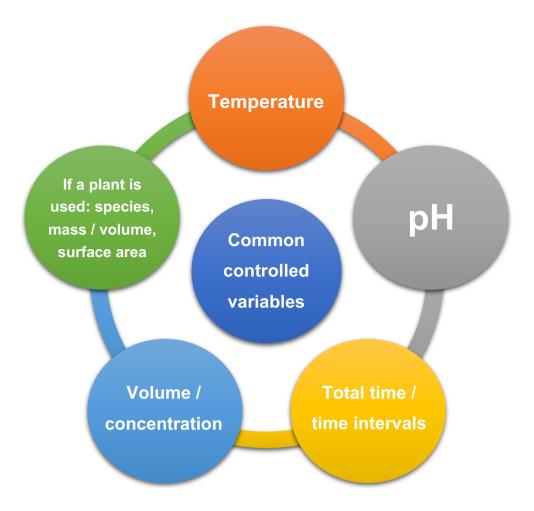
Different exercise types
Same duration

MEASURING HEART RATE

- Digital heart rate monitor
- Count pulse over 1 min

- How to repeat: test on the same person for multiple times, or test on multiple participants.
- Remember to mention the health conditions of participants as a safety precaution.

Possible ways of measuring a dependent variable


A colour change happens

Use a colorimeter / colour chart for comparison

- Measure time taken to reach a set endpoint, or:
- Record colour at set time intervals over a fixed time

A gas is produced

- Measure volume of gas using a gas syringe / inverted measuring cylinder over a fixed period of time
- Counting bubbles is less accurate

Possible error sources and improvements

Source of error	Improvement
Temperature not maintained	Use a thermostatically controlled water-bath
Judging colour change by eye	Use a colorimeter
Imprecise measuring of volume	Liquid – use a burette Solid – use a ruler to measure same dimensions Gas – use a gas syringe instead of counting bubbles
Many processes are done at the same time – errors more likely	Do processes sequentially
Equipment unwashed – can cause contamination	Wash and dry equipment (to prevent dilution) Use new ones each time
No repeats	Repeat 3 times to increase reliability
Variable not controlled	Method to keep it the same
Insufficient intervals of IV	Test a wider range / more and smaller time intervals
Imprecise scale of equipment	Use equipment with a more graduated scale

• Try to pick "obvious" errors in the method as usually not all will be accepted by the mark scheme.

Planning an investigation

Example: investigating the effect of temperature on the activity of amylase enzyme

Independent variable

- Specify range of values 15°C, 25°C, 35°C, 45°C, 55°C
- How to control the IV use a thermostatically controlled water bath to maintain each temperature

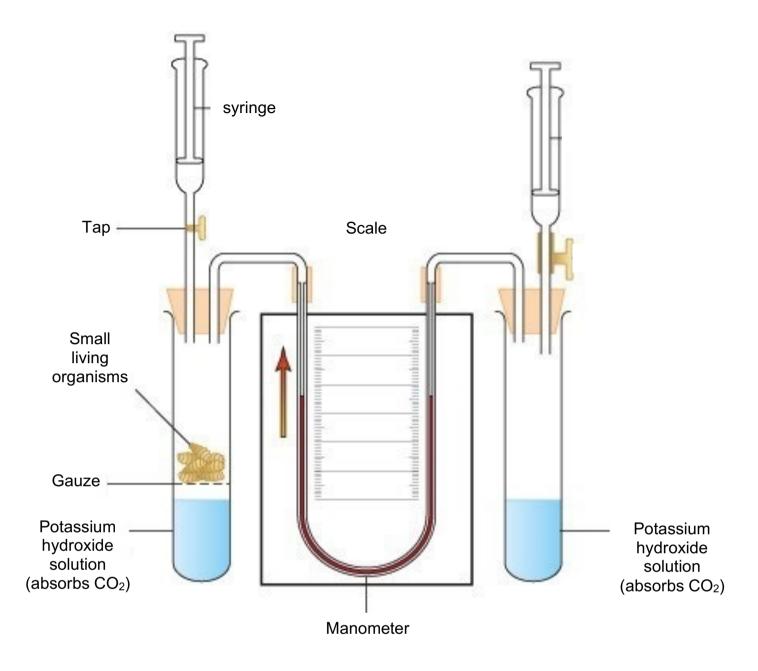
Dependent variable

- If set endpoint time taken for iodine solution to change from brown to colourless, using a colorimeter
- If measured at intervals take samples from the amylase & starch mixture every 1 min for 10 min

Controlled variables

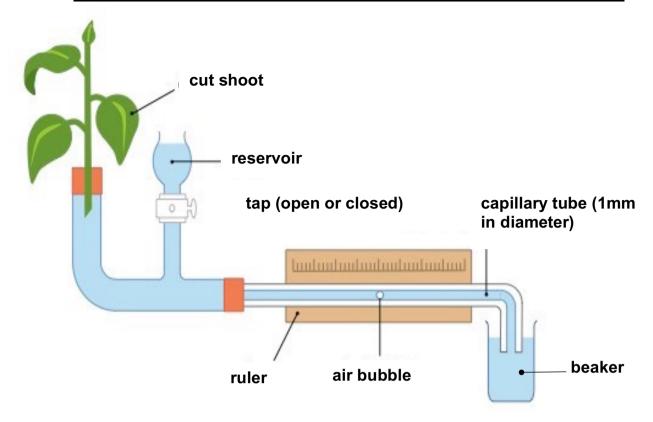
- Same concentration and volume of starch suspension
- Same concentration and volume of amylase
- Same pH (using a buffer solution)

Control group


- Keep all conditions the same
- Except add water to starch instead of amylase

Repeats & safety

- Repeat investigation 3 times and calculate a mean
- Wear safety goggles and gloves
- **Control variables** are held constant throughout both experimental and control groups. This ensures that only the effect of the independent variable on the dependent variable is investigated.
- A control group is not exposed to the independent variable, to compare with the experimental group.
 This is to show that no factor other than the independent variable is causing an effect.

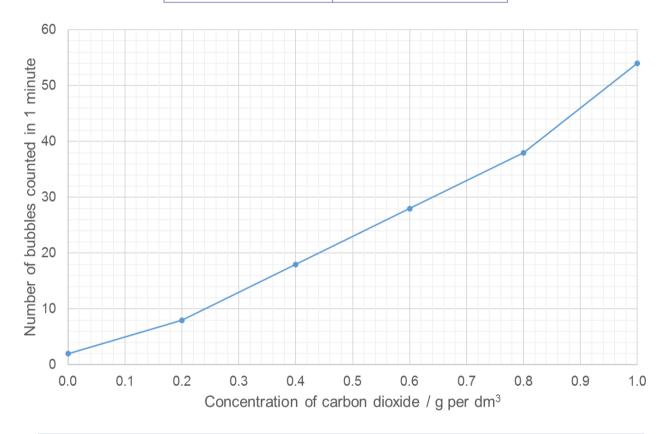

Possible hazard in experiment	Safety precaution	
Use of acid / alkali / enzyme		
Use of Benedict's solution	Wear safety goggles and gloves	
Heating	Use a water bath to heat and not a Bunsen burner	
Use of knife for cutting	Cut on a solid surface and away from hands	
Use of ethanol – flammable	Keep away from flames	

Respirometer – used to measure the rate of respiration

- Living organisms are placed in a sealed glass container.
- As the animals respire they would use O₂ and the liquid in the manometer would move towards
 them (up). However, they would also produce CO₂, which would move this liquid away from
 them (down).
- Potassium hydroxide or soda lime (alkali) is added to the tube, which absorbs CO₂.
- This ensures that **only** the **O**₂ **used** is responsible for **moving** the **liquid**.
- The greater the distance the liquid moves towards them, the greater the rate of respiration.
- The temperature must be kept the same throughout as it affects the rate of respiration due to decreased or increased enzyme activity.

Potometer – investigating the effect of on the rate of transpiration

Preparation before starting:

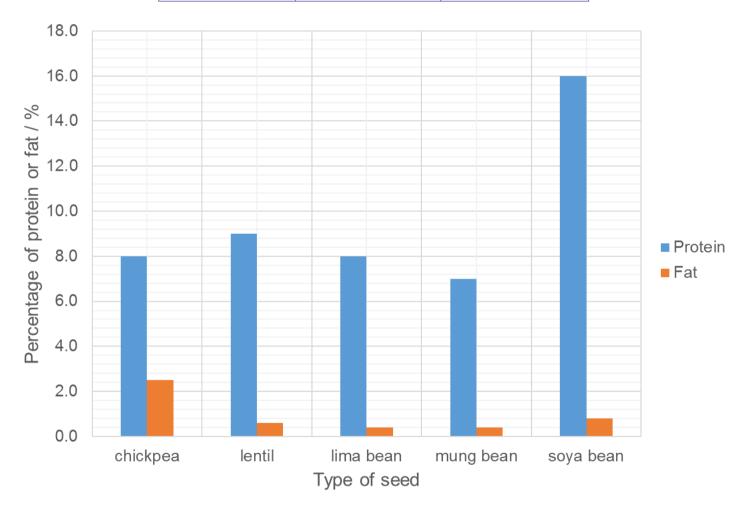

- Cut the shoot underwater and at an angle to prevent air outside from entering the xylem
- Seal all joints with Vaseline to prevent entry of air and evaporation of water

Independent variable	How to change it	Dependent variable
TEMPERATURE	Set up the potometer in a thermostatically controlled waterbath, each time using a different temperature	Measure distance moved by the air bubble
LIGHT INTENSITY	Place a lamp at different distances from the plant	over a fixed period
HUMIDITY	Cover the plant with a plastic bag and spray different amounts of water inside Unit for humidity = g per m ³	of time Divide the distance by time to calculate the
WIND SPEED	Use a fan at different wind speeds	rate of transpiration
SURFACE AREA	Use the same plant / plants of the same species with different numbers of leaves	(rate of water uptake)

- Except for the factor that you are investigating, all the others shown above should be controlled.
- Open the tap to reset the air bubble for three repeats, then calculate a mean value.

Line graphs

Amount of carbon dioxide / g per dm ³	Number of bubbles counted in 1 minute
0.0	2
0.2	8
0.4	18
0.6	28
0.8	38
1.0	54

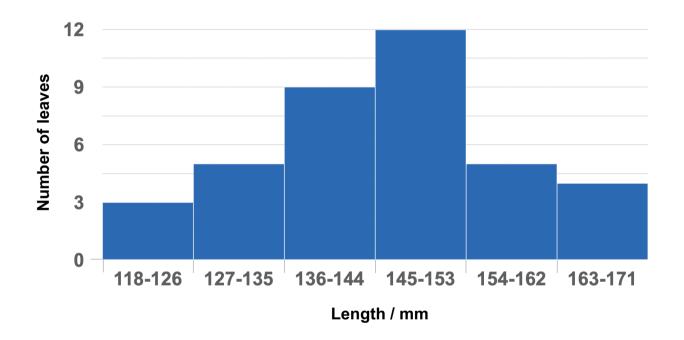


- 1 Use an even scale that takes up most of the graph paper
- 2 Use a suitable scale starting values do not have to be 0 or the same
- 3 Both axes should have titles and units (if appropriate)
- 4 Use a key (e.g. "x" and "+" for plotting) or label each line (if appropriate)
- 5 Plot points accurately (use an "x" to plot)
- If you are asked to plot information given in a table, then the independent and dependent variables can be found directly in the table's column headings.
- Clearly anomalous points should be ignored when drawing a best-fit line.

Bar graphs

• Used to represent discontinuous data, i.e. when one of the variables contains distinct categories.

Type of seed	Percentage of protein / %	Percentage of fat / %
chickpea	8.0	2.5
lentil	9.0	0.6
lima bean	8.0	0.4
mung bean	7.0	0.4
soya bean	16.0	0.8



- 1 Bars of different categories should have gaps of equal width in between
- 2 All bars should have the same width
- **3** Both axes should have titles and units (if appropriate)
- 4 Use a key when there are multiple bars for each category

Frequency histograms

- Used to represent discontinuous data where frequencies of the categories are measured.
- The graphing question will usually tell you which type of graph to draw, but histograms are not often tested on paper 6.

Length / mm	Number of leaves
118 – 126	3
127 – 135	5
136 – 144	9
145 – 153	12
154 – 162	5
163 – 171	4

- 1 All blocks should be touching and have the same width
- 2 Label each category on the x-axis by class ranges (e.g. 118-126, 127-135)

 OR by putting the lowest number in each range (e.g. 118, 127, 136) at the start
- 3 Both axes should have titles and units (if appropriate)
 Frequency is represented by the y-axis
- 4 Use a key when there are multiple bars for each category

Describing the trend of a line graph

- Do the variables have a **positive** or **negative** correlation?
- Is the relationship **linear** or **exponential**?
- Describe the trend increase / decrease (steep or gradual?) / constant / levels off
- Are there any maximum / minimum points?
- Use comparative data with units

Improving data

Accurate = close to the "true", error-free value

Reliable = similar results are obtained when repeated

	Reliable	Unreliable
Accurate	The correct value is obtained all the time	The correct value on average, but results vary between repetitions
Inaccurate	The same incorrect value all the time	An incorrect value on average, and results vary between repetitions

Why should we do repeats?

- 1. To make the average (mean) more reliable
- **2. To identify anomalies** (results that do not fit the general trend)

How to get a representative sample

- Simple random sampling is a technique used to avoid bias this ensures that all individuals
 in a group have an equal chance of being selected.
- The sample size must also be large enough so that the distribution of data will unlikely be skewed due to anomalies.

Calculating percentage concentration

	test-tube number						
	1	2	3	4	5	6	7
volume of 1% protein solution/cm ³	0.00	0.25	0.50	1.00	2.00	3.00	4.00
volume of distilled water/cm ³	5.00	4.75	4.50	4.00	3.00	2.00	1.00
percentage concentration of protein solution	0.00	0.05	0.10	0.20	0.40	0.60	0.80

Total volume of diluted solution

Total volume of diluted solution

Concentration

Total volume of diluted solution

We concentrated solution

Dilution factor

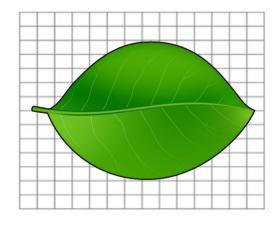
Test tube 3

Solution to example: 0.50 / 5.00 = 1 / 10

Dilution factor = 10

% conc = 1 % / 10 = 0.10 %

Test tube 7

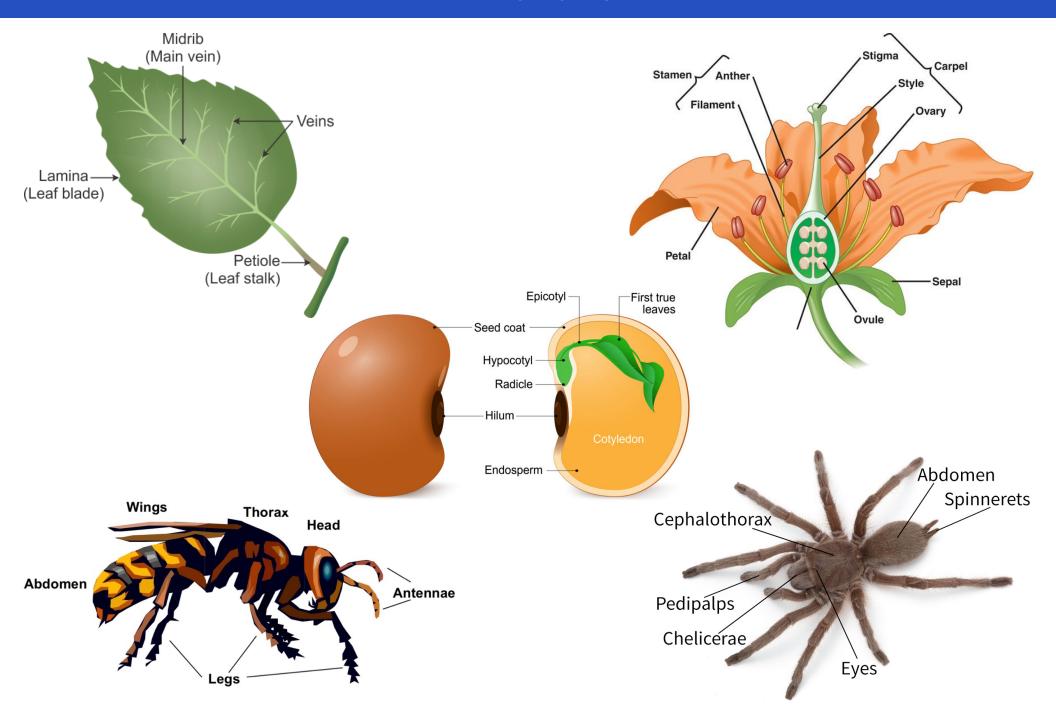

4.00 / 5.00 = 1 / 1.25

Dilution factor = 1.25

% conc = 1 % / 1.25 = 0.80 %

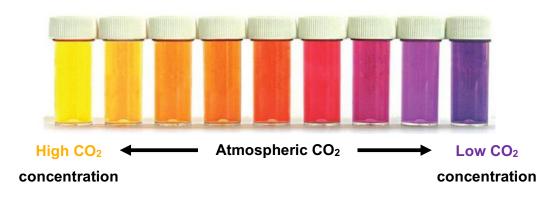
Measuring leaf area using a grid

- 1 Trace around the leaf outline on the grid
- 2 Count the number of squares occupied
- 3 Include any squares more than half covered


Calculating magnification

Magnification Image size
Actual size

1 mm = 1000 μm KEEP UNITS THE SAME! ⊚


• When measuring things in paper 6, using **millimetres** would be better than centimetres.

LABELLING DIAGRAMS

TESTS FOR CARBON DIOXIDE

HYDROGENCARBONATE INDICATOR

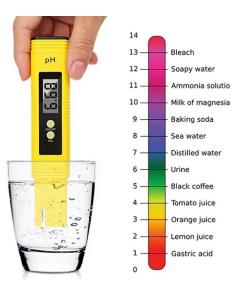
LIMEWATER TEST


Limewater turns milky when CO₂ is bubbled through

TESTS FOR PH

TURNS PURPLE

BLUE / RED LITMUS PAPER TEST


TURNS YELLOW

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 acidic neutral alkaline

UNIVERSAL PH INDICATOR

DIGITAL PH METER

Note that litmus is the less accurate than the other two as it cannot give an exact pH value.

HINIT :

Breen, Annina. "The Major Ranks: Domain, Kingdom, Phylum, Class, Order, Family, Genus, and Species, Applied to the Red Fox, Vulpes Vulpes.,"

Wikipedia. 29 May 2015. en.wikipedia.org/wiki/Taxonomic rank.

Encyclopædia Britannica. "Red Fox (Vulpes Vulpes)," Encyclopædia Britannica, www.britannica.com/animal/red-foxmammal#/media/1/494259/246696.

Eppig, Christopher. Ape Cladogram, 22 Mar. 2014, christophereppig.wordpress.com/tag/cladogram/.

IINIT 2

Katy, McLaughlin. "Labeled Diagram of a Typical Animal Cell," Biology Dictionary, 19 Oct. 2020, biologydictionary.net/animal-cell/.

Untitled image. "Are Viruses Dead or Alive?," Khan Academy, www.khanacademy.org/test-prep/mcat/cells/viruses/a/are-viruses-dead-or-alive#:~:text=Are%20viruses%20alive%20or%20dead%3F,-

Well%2C%20we%20know&text=Most%20biologists%20say%20no.,androids%20than%20real%20living%20organisms...

UNIT 4

Wilson, M.T., and B.J. Reeder. "Three-Dimensional Ribbon Model of Sperm Whale Myoglobin," *Encyclopedia of Respiratory Medicine*, 2006, www.sciencedirect.com/topics/neuroscience/myoglobin.

HINIT

Ali Zifan - Own work; Used information from: Campbell Biology (10th Edition) by: Jane B. Reece & Steven A. Wasserman. "Opening and Closing of Stoma. As K+ Levels Increase in the Guard Cells, the Water Potential of the Guard Cells Drops, and Water Enters the Guard Cells.,"

Wikipedia, 8 July 2016, en.wikipedia.org/wiki/Guard_cell#/media/File:Opening_and_Closing_of_Stoma.svg.

LINIT 7

Cornell, B. "Emulsification of Lipids," *BioNinja*, 2016, ib.bioninja.com.au/standard-level/topic-6-human-physiology/61-digestion-and-absorption/lipid-digestion.html.

UNIT 8

"Xylem Vessel." Twinkl, www.twinkl.com.mx/teaching-wiki/xylem-and-phloem.

Gibson, Roberta. "Plant Root Viewer," Growing with Science Blog, 22 June 2015, blog.growingwithscience.com/tag/plant-root-viewer/.

Leaf Terminology. lah.elearningontario.ca/CMS/public/exported_courses/SBI3U/exported/SBI3UU01/SBI3UU01/SBI3UU01A03/ ld1.html.

Nefronus. "Vascular Bundle(Xylem+Phloem) Carrying Water(Xylem) and Minerals and Products of Photosynthesis(Phloem) to Various Parts of the Plant.," Wikipedia, 2 Mar. 2019, en.wikipedia.org/wiki/Phloem#/media/File:Xylem and phloem diagram.svg.

UNIT 9

Rehfeld, Anders, et al. "Capillaries and Shunt Vessels," *The Cardiovascular System. In: Compendium of Histology*, 2017, link.springer.com/chapter/10.1007/978-3-319-41873-5 17#citeas.

LIMIT 10

2004 Pearson Education, Inc. Agglutination Reactions, www.pinterest.co.uk/pin/513058582542330747/.

Cooney, Elizabeth. "Blood Clots in Severe Covid-19 Patients Leave Clinicians with Clues about the Illness — but No Proven Treatments," STAT, 16 Apr. 2020, www.statnews.com/2020/04/16/blood-clots-coronavirus-tpa/.

Fiedler, Sebastian. "Neutralizing Antibodies Bind to Spike Proteins on the Surface of SARS-CoV-2 and Prevent the Virus from Binding and Entering the Host Cell.," Fluidic Analytics, 27 Aug. 2020, www.fluidic.com/resources/What-are-neutralizing-antibodies/.

OpenStax College. "Figure 18.8 Antibodies Serve as Opsonins and Inhibit Infection by Tagging Pathogens for Destruction by Macrophages,

Dendritic Cells, and Neutrophils.," *Microbiology*, openstax.org/books/microbiology@9.12/pages/18-1-overview-of-specific-adaptive-immunity?query=complement&target=%7B%22type%22%3A%22search%22%2C%22index%22%3A0%7D#fs-id1167662509562.

---. "Figure 18.9 Antibodies, Especially IgM Antibodies, Agglutinate Bacteria by Binding to Epitopes on Two or More Bacteria Simultaneously.,"

Microbiology, openstax.org/books/microbiology@9.12/pages/18-1-overview-of-specific-adaptiveimmunity?query=complement&target=%7B%22type%22%3A%22search%22%2C%22index%22%3A0%7D#fs-id1167662509562.

---. "Figure 18.10 Antibody-Dependent Cell-Mediated Cytotoxicity," *Microbiology*, openstax.org/books/microbiology@9.12/pages/18-1-overview-of-specific-adaptive-immunity?query=complement&target=%7B%22type%22%3A%22search%22%2C%22index%22%3A0%7D#fs-id1167662509562.

Northern Rivers Vaccination Supporters. "Herd Immunity," NRVS, Jan. 2021, nrvs.info/faqs/herd-immunity-or-community-immunity/.

Pearson Prentice Hall, Inc. "Figure 49-16 Biological Science, 2/E," NRVS, 2005, nrvs.info/how-do-vaccines-work/.

UNIT 11

McLaughlin, Katy. "Goblet Cells," Biology Dictionary, 9 June 2020, biologydictionary.net/goblet-cells/.

UNIT 14

Cornell, B. "Structure of a Typical Nerve Cell (Motor Neuron), Adapted from ASU Ask a Biologist. © Arizona Board of Regents," *BioNinja*, 2016, ib.bioninja.com.au/standard-level/topic-6-human-physiology/65-neurons-and-synapses/neurons.html.

---. "Tropism in a Typical Plant," BioNinja, 2016, ib.bioninja.com.au/higher-level/topic-9-plant-biology/untitled-2/tropisms.html.

Herlihy, Arielle. "Pupillary Reflex,", 2018, quizlet.com/348924418/pupillary-reflex-diagram/.

OpenStaxCollege. "Central and Peripheral Nervous System," *Anatomy & Physiology*, 6 Mar. 2013, pressbooksdev.oer.hawaii.edu/anatomvandphysiology.

Saffih, Fayçal. "The Distribution of Rods and Cones Photoreceptors in Human Eye, after Ref. 9.," ResearchGate, June 2004, www.researchgate.net/figure/The-distribution-of-rods-and-cones-photoreceptors-in-human-eye-after-Ref-9 fig6 228484624.

Pearson Education, Inc. "Figure 39.4 Early Experiments of Phototropism," ABC IB Biology, johnosborneabcbiology.wordpress.com/plant-biologyhl-topic-9/9-3-growth-in-plants-auxins/.

University of Waikato. "How the Eye Focuses Light," Science Learning Hub, 14 Mar. 2012, www.sciencelearn.org.nz/images/53-accommodation.

UNIT 15

"Antibiotic Resistance and Bacterial Evolution." BiteScis, bitescis.org/lesson-plan/antibiotic-resistance-and-bacterial-evolution/.

UNIT 16

CNY Fertility. "Artificial Insemination: Types, Process, Costs and More," CNY Fertility, 2 June 2020, www.cnyfertility.com/artificial-insemination/. Dimes, Jonathan. "The Placenta: What It Is and How It Works," Babycentre, Mar. 2021, www.babycentre.co.uk/a25036426/the-placenta-what-it-is-and-how-it-works.

Galian, Mireia. "In Vitro Fertilisation (IVF)," IVI, 4 Mar. 2020, www.ivi.uk/blog/ivf-vs-iui/.

Gilabert, Neus, et al. "The Different Phases of the Menstrual Cycle," InviTRA, 14 Jan. 2020, www.invitra.com/en/phases-of-the-menstrual-cycle/#follicular-phase.

Walpole, Brenda. "Figure 9.20 Fertilisation of an Ovule in the Ovary of a Plant.," Biology for the IB Diploma, Second Edition, 2014.

ScienceFacts.net. "Plant Life Cycle,", 4 Feb. 2021, www.sciencefacts.net/plant-life-cycle.html.

"All about Seeds Germination." Theseedsmaster, 21 Aug. 2019, theseedsmaster.com/blog/all-about-seeds-germination/.

UNIT 17

Encyclopædia Britannica. "Klinefelter Syndrome," *Encyclopædia Britannica*, www.britannica.com/science/karyotype#/media/1/312815/232711. Slizewska, Gabi. "DNA," *Expii*, www.expii.com/t/dna-role-in-inheritance-overview-importance-10171.

UNIT 17

Masson, Remi. "Water Lily (Nymphaea Alba) Flower Underwater in Lake, Ain, Alps, France, June.," Nature Picture Library, 2020,

www.naturepl.com/stock-photo-water-lily-nymphaea-alba-flower-underwater-in-lake-ain-alps-france-nature-image01657222.html.

Nature Comes Standard, LLC. "Heat Beating Desert Adaptations of the Cactus,", www.naturecomesstandard.com/blog/2019/1/7/heat-beating-desert-adaptations-of-the-cactus.

UNIT 19

"Black Marlin." Animal Life Expectancy, www.worldlifeexpectancy.com/fish-life-expectancy-black-marlin.

Encyclopædia Britannica. "Generalized Aquatic Food Web," Encyclopædia Britannica, www.britannica.com/science/marineecosystem/Plankton#/media/1/365256/16.

"Great White Shark." Oceana, oceana.org/marine-life/sharks-rays/great-white-shark.

NOAA MESA Project. "Phytoplankton - the Foundation of the Oceanic Food Chain.," Wikipedia, 19 Mar. 2011,

commons.wikimedia.org/wiki/File:Phytoplankton_-_the_foundation_of_the_oceanic_food_chain.jpg.

Solvin Zankl / Wild Wonders of Europe. www.pewtrusts.org/en/research-and-analysis/articles/2020/04/29/for-global-tuna-industry-covid-19-complicates-long-standing-challenges.

LINIT 21

"The Greenhouse Effect." Passive Solar Home, bradybradybrady.weebly.com/greenhouse-effect.html.

Jim West/Alamy Stock Photo. blog.humanesociety.org/2019/06/epa-gives-factory-farms-a-free-pass-on-toxic-air-emissions.html.

"Monoculture Farming in Agriculture Industry." Earth Observing System, 20 Oct. 2020, eos.com/blog/monoculture-farming/.

Aruba Today, www.arubatoday.com/dont-forget-the-plastic-ban-ordinance-for-aruba-will-go-into-effect-as-of-july-1st-2/.

PAPER 6 REVISION

www.instructables.com/How-To-Germinate-Lilies/.

www.topperlearning.com/answer/i-what-is-a-leaf-ii-draw-the/ewemfa7hh.

Blair, Lesley. "Fruits & Seeds," Nature Journals, 2019, naturejournals.org/index.php/environments/classification/fruit-seeds/

Extension Master Gardener Volunteers Of Buncombe County. From "Good Bugs and Bad Bugs," 19 May 2020.

2020 Spidentify - All images @ Minibeast Wildlife. "Mygalomorph Spiders,", identify-spiders.com/spider-anatomy/.

Many illustrations from https://smart.servier.com/ are used in this document.